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ABSTRACT 

Various methods have been proposed to estimate the parameters 

of both open loop and closed loop sampled-data control systems. 

Generally speaking, these  methods yielded approximate models of the 

system under study; the degree of approximation depending on the 

a priori knowledge of the system structure, s ta te  observation noise,  

system nonlinearities , and other factors 

methods has  been applied to the problem of determining the sampling 

However, none of the 

interval of either closed loop or open loop sampled-data control 

systems. This has  been the t a sk  of the present study Specifically, 

th i s  dissertation is concerned with estimation of parameters i n  

systems that have internal sampling, but have continuous input and 

output . The continuous portion of the sampled-data system is given 

by the differential equation 

- =  dz f ( 2 ,  p, u(t)); z(t=O) = 5 dt 

where z is an  n dimensional vector of s ta te ,  f (  is the n 

dimensional vector of the dynamical system, p is a constant h 

dimensional vector of parameters, u(t) is a n  r dimensional vector of 

piecewise continuous control functions, and < is the initial condition 

vector,, For our resul ts ,  f (  ) was required to be of class C1 in  z 

and p. The differential equation is preceded by s o m e  form of data 

hold. The model-matching technique was used for parameter estima- 

tion. Methods were developed for determining not only the sampling 

xii 



interval, but all  the other parameters and ini t ia l  conditions of the 

sampled-data system a s  well. 

In th i s  investigation, three methods were employed for the 

estimation of sampling intervals and other parameters of a sampled- 

data system. In al l  methods, the cost  function was the integral of 

norm-squared error, where the  error function was defined a s  the 

difference between the  observed s ta te  vector of the system, and the 

s ta te  vector of the model. 

The first method employed programmed search to  vary the model 

parameters in  order t o  minimize the cost  function. 

The second method employed iterative gradient search by means 

of discrete sensitivity difference equations for the various model 

parameters. The work of Bekey and Tomovic in connection with 

discrete sensitivity difference equations for the sampling interval was 

extended t o  a l l  the  other parameters of the  system. Gradient search 

was then used for parameter estimates. 

The third, and most important, method used was that of 

stochastic approximation. This permitted observation noise. The 

mean-square convergence of the model parameters to the true para- 

meters of the system was proved under the  following conditions: The 

system and model agreed in  form and order, the data holds were 

identical ,  the observation noise had zero mean, finite variance, and 

was uncorrelated with both the  system state  vector and model s ta te  

vector, f (  1 was of c l a s s  C in  z and p,  and the  partial derivative 

xfii 

1 



of the cost function with respect to the sampling interval existed and 

was bounded. 

Stochastic approximation was then applied t o  the  practically 

important problem of estimating the  parameters of the human operator 

from records of scalar  input and scalar  output of the human operator 

operating i n  a closed loop configuration. Parameters were estimated 

successfully in  both continuous and sampled-data models of human 

operators. 

XiV 



CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 General S ta temea  - 
Various methods have been proposed to estimate the parameters 

of both open loop and closed loop sampled-data control systems. 

Generally, these methods yield approximate models of the system 

under study; the degree of approximation depending on a priori 

knowledge of the  system structure, s ta te  observation noise,  system 

nonlinearities, and other factors. However, at  the present t i m e  not 

one of the current methods has  been applied to the problem of 

determining the sampling interval of either closed loop or open loop 

sampled-data control systems. This is the t a sk  of the present study, 

Specifically, we will be concerned with systems that have internal 

sampling, but have continuous input and output. Refer to Figure 1.1 

for a schematic diagram of such a system. The continuous portion of 

the sampled-data system is given by 

(1.1) 
dz 
dt - = f ( z ,  p ,  u(t)), z(t=O) = I; 

where z is a n dimensional vector of s ta te ,  f is the n dimensional 

vector of the dynamical system, p is a constant h dimensional vector 

of parameters, and u(t) is an r dimensional vector of control. Note 

that h I n. The solution to (1.1) , written formally a s  z(t; p ,  f , u(t)) , 

will often be denoted by z(t; p ,  5 1 ,  z(t; p) , or z(t) a s  required by 

the particular treatment a t  the t ime .  Thus, we will usually suppress 

1 
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notational dependence on init ial  co 

they are not to be varied during the  

and will not always explic 

which will become clear later. 

itions and/or paramet 

urse of an  estimatio 

y show the u(t) dependence for reasons 

Proceeding informally for the present, we will assume that the 

(i ,g=l,  2 ,..., n; j=1, 2 , .  ..,h) exist and f i ,  afi/azg, and afi/2pj 

are continuous functions of t ,  z ,  p,  and u. . Assuming, furthermore, 

that the  data hold is of a given type ,  such a s ,  for example, zero- 

order, we will treat the problem of estimating not only the sampling 

interval T of the sampled-data system of Figure 1.1, but a l so  the 

components of the parameter vector p of the continuous system a s  

well. 

estimate the  components of the initial condition vector !, . However, 

The methods we develop c a  n, i n  addition, be used to  

modeling studies are .limited to the  estimation of p and T . 
While it is clear that th i s  is an important topic in  estimation 

theory, it is of practical importance as  well. For example, the 

application of analytical and computer techniques to process control 

is a challenging and important problem area in  the modern control 

field. Generally, i n  order to control the plant i n  the  desired manner, 

the parameters of the  closed-loop system must be known. This study 

set of plant parameters which may be estimated to include 

interval when the data hold is of constant characteristic 

and the differential equation of the  plant sat isf ies  equation (1.1) 

control, the 

continues to be a n  important problem area i n  the synthesis of modern 

dy of manual control 
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OBSERVATION 
NOISE 

Figure 1.1 Sampled-Data System to  be Estimated 
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aerospace vehicles. Early flights i n  the manned space vehicle 

program , including the  Mercury and Gemini missions,  have clearly 

demonstrated the importance of t he  human controller in  the closed-loop 

control system configuration , and the consequent importance of 

precise knowledge of his dynamic characterist ics t o  control system 

designers. A s  new space programs are formulated, it will become 

increasingly important to  develop satisfactory techniques for deter- 

mining accurately the dynamic characteristics of human performance 

in  control t a sks .  

1 .2  Some Definitions 

At the outset  we will adopt the following somewhat arbitrary 

definitions. In particular , they are concerned with the problem of 

determining the coefficients and/or states of a plant described by an 

ordinary differential equation, 

Definition 1: An identification is here defined a s  the  determination 

of the coefficients of the differential equation of the  plant by means 

of some types of model adjustment technique when the exact form 

of the differential equation is known and when measurements of 

t he  obsewed quantities are noise-free. Under these restrictions , 

a plant is said to  be identified when these  coefficients are known 

exactly. 

Definition 2: An optimal estimate is here defined as  the determina- 

t ion,  i n  some optimal s ense ,  of the coefficients of a plant by 

means of model adjustment when the exact form of the differential 
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equation of the plant is possibly unknown and when the observed 

quantities are  noise-corrupted 

1.3 Background - 

The research activity reported i n  this  dissertation is concerned 

with the problem of estimating sampling rates in  sampled-data control 

systems whose output s ta te  variables are continuous functions of 

t ime .  While the purpose is to develop a method which will ultimately 

be useful in  estimating sampling intervals in  a wide variety of 

sampled-data control systems, the approach taken here is rather 

general, being concerned with estimating a sampling-interval, as well 

a s  other parameters, of a sampled-data system i n  general. 

However, a literature search discloses  that all previously 

recorded attempts a t  such estimation have been concerned with the 

human operator. This is because of the  relative importance of 

obtaining accurate models of the  operator dynamics for use in  control 

synthesis studies.  Examples of these studies a re  found in  connection 

with aircraft and spacecraft design. 

Intermittency in  human tracking behavior has  been used a s  a 

bas i s  for modeling of simple manual control systems in a number of 

early studies. ‘This is discussed in  papers by Ward [I], Bekey [31, 

Lemay and Naslin [41. More recently, intermittent behavior has  been 

reported by Pew, Duffendack, and Fensch [SI .  In a l l  these models, 

systematic techniques for t he  determination of the sampling interval 

have been lacking. The problem is further complicated by the fact 
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that  the  s tudies  of MCRuer et a1 C61 a s  well as recent expe 

Jacobson, Biddle, and Bekey C71 have indicated that i f  sampling is  

present in  human operator behavior, it does not consist  of a simple 

periodic sampler, but rather a random sampler i n  which a mean 

sampling interval has  superimposed upon it a random variability of 

magnitude sufficient to  obscure the resulting periodicities i n  operator 

output spectra. 

Recently, some progress has  been made in  the  direction of 

obtaining methods for the estimation of the parameters of sampled 

models, including a quantitative measure of both a constant or a 

random sampling frequency. The work of Bekey and Tomovic E81 has 

shown that dynamic system sensitivity analysis can be applied to  

systems with variable sampling. They have furnished the mathematical 

formulation of the system sensitivity to  sampling interval variations, 

and have shownshow adaptive sampling may be implemented in  

adaptive control situations. More recently, Neal E91 has applied 

these results to  the  determination of constant sampling frequencies 

in  linear noise-free closed-loop sampled-data control systems 

described by Figure 1.1. This work will be discussed i n  Chapter 2.  

1.3.1 

The purpose of this  section is  to  provide a brief review of 

several parameter estimation techniques which are of current interest .  

For detailed accounts of a wide variety of parameter estimation 

techniques reference is made to  the more detaileg surveys of Nahi 1661, 
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Eveleigh [ S l l ,  Cuenod and Sage C821, and Eykhoff C831. Unless 

noted a l l  vectors have the dimensions given in  Section (1.1). 

Kopp and Orford e131 describe a method for obtaining an itera- 

t ive estimate of both the parameters and the  state of linear mode l s  of 

possibly nonlinear time-varying systems described by ordinary 

differential equations. Such nonlinear 

where the nomenclature is the same a s  

systems are represented by 

do) = 5 (1.2) 

that of equation (1.1). 

Basically, their technique is an extension of the Kalman iterative 

s ta te  estimation technique implemented, in  th i s  c a s e ,  by adjoining a 

set of assumed linear differential equations for t he  parameters t o  the 

set of linear differential equations describing the linear model of the 

system. The differential equations for the unknown parameters are 

assumed to  sat isfy,  for example, a model such a s  

A i i dpi dt = ai (t) [pi(t) - + wn (t); p (o)=pd (1.3) 

i where p (t) represents the  ith unknown parameter, ai(t) is a given 
"i (assumed) time-varying coefficient, p (t) is the present estimate of 

th  the  temporal history of pi(t), and wd(t) is the noise term of the i 

parameter with assumed properties: 

where 6 (  f is the  Dirac delta function, and u: i is given. The 

init ial  conditions, 
n 

5 and po, for both the s t a t e  differential 
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equations (1.2) and the  parameter differential equations (1.3) are  

drawn from a set of normally distributed random variables. Sequential 

linear regression is then used to obtain the estimates of the  augmented 

s ta te  vector. Because linear regression is employed, the parameter 

estimates thus satisfy a minimum mean-square error criterion 1663 

The quasilinearization method [ 141 has  been applied to the 

estimation of the components of the constant parameter vector p and 

the  initial condition vector 5 of equation (1.1) 

where the form of f (  0 ) is assumed to be known, and it is assumed 

that noise-free observations of some of the s t a t e s  of (1.1) are 

available. By assuming 

P(0) = Po (1.5) 

and adjoining (1.5) t o  (1.1) and regarding (1.1) a s  the  forward loop 

control system, and u(t) a s  the sum-junction error signal,  of a 

unity feedback closed loop control system, the new problem E141 

becomes that of estimating the  components of the augmented init ial  

condition vector of the  vector differential equation 

dz  
dt  - = fG), 
- hr - 

z(0) = 5 (I.. 6) 

1 where the F(t) is an  (n+h) dimensional vector .e Observations b (t) 'of only 

the first component of the original s ta te  vector ( z  = z 1 are required and 

the quasilinearization technique is then used to generate the  (kt-1) 

1 -1 

st 

sequential estimate t ime  history of the augmented s ta te  vector, 
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(t) so a s  to minimize (k+l) written a s  2 

N 

i= 1 

In order to start the procedure an initial estimate 

(1 7) 

of;(t) is assumed. 

The detai ls  of the quasilinearization technique are discussed in  the 

work of Bellman, Kagiwada, and Kalaba [ 141. The quasilinearization 

approach to parameter estimation has  the weakness that convergence, 

in general, will occur only i f  the initial estimates of the components 

of ;(t) are sufficiently close to  their respective true values. 

Detchmendy and Sridhar [841 applied invariant imbedding to  the 

estimation of noisy s ta tes  and parameters in  time-varying nonlinear 

dynamic systems. The form of the dynamic system is assumed to be 

known exactly and may be written for example as 

&i = f (z , t )  + k(z, t )u( t ) ,  dt (1.8) 

where u(t) represents an r vector of unknown forcing functions. Also, 

equation (1.8) is here assumed to  be already in  augmented form, and 

hence contains the assumed differential equations for the parameter 

variations. Observations of the s ta tes  z are  expressed by the m 

vector 

v(t) = h(z,t) + n(t) (1.9) 

where n(t) is the observation error m vector. No s ta t is t ical  

assumptions are made concerning the unknown input vector u(t) or the 



10 

observation error vector n(t). The cost  function 

(1 10) 

is to  be minimized with respect t o  z(t) and u(t) for 0 i t i tf subject 

to  the constraint differential equation 

n 

dt = f(z",t) + k(z",t)u"(t), ao) = 5 ,  (1.11) 

where Z(t) and Q(t) are the estimates of t he  state vector and 

unknown forcing function vector respectively, and Q and W are 

positive definite weighting matrices. The Hamiltonian for the 

system of (1.10) and (1.11) is then  written and the maximum principle 

is used t o  obtain a two-point boundary value problem for which some 

of the boundary conditions are specified at  t = O  and some are  specified 

a t  t = tf.  Then, b y  using the  invariant imbedding equations, a 

sequential estimator for the noisy s ta tes  and noisy parameters is 

obtained. The derivation of the invariant imbedding equations is 

given i n  References C841 and [SSl. The invariant imbedding 

approach t o  parameter estimation has  the advantage that noisy 

parameters can be treated and, i f  the  system is stable and observable, 

then convergence of the estimator equations to  their minimizing 

(least-squares) values will occur over a wide range of init ial  

conditions C8 5 1. 
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Stochastic approximation, which will be discussed at  length in  

Chapter 3 ,  has  been suggested or used- by Bertram C171, 

Sakrison [18,19], Ho and Whelan C201, Kushner [ 2 1 , 2 2 1 ,  Ho and 

Lee C231, Kirvaitis C241, Holmes C251, and others for parameter 

estimates i n  both open loop and closed loop linear and nonlinear 

continuous control systems. However, up to  the present t i m e ,  no 

application of th i s  technique has  been made t o  determining sampling 

intervals.  In this dissertation, we will apply stochastic approximation 

t o  the  problem of estimating sampling intervals and other parameters 

of closed loop sampled-data systems. 

1 .4  Objectives Of The Study 

From the foregoing discussion it is clear that  many techniques 

have been successfully applied to the task  of estimating the parameters 

of controlled systems. Some of these can a l so  be used t o  estimate the 

parameters of closed loop control systems. 

it has  not been shown that any of the previous methods could be used 

t o  identify either deterministic or random sampling intervals in  closed 

loop sampled-data control systems. Therefore the objectives of this  

study are a s  follows: 

Until the present study 

Given the sampled-data control system of Figure 1.1, with the 

properties given in  Section 1.1 , it is desired to develop a n  estimation 

technique which will ultimately lend itself t o  the estimation of a l l  the  

parameters of the sampled-data system , including the sampling 

interval. In order t o  accomplish th i s  objective , consider the model- 

matching least-square parameter estimation configuration of either 
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Figure 1 .2 ,  or Figure 1.3, consisting of a closed loop sampled-data 

system, which, i n  practice, might have unknown parameters, and a 

model of that system which will be designated a s  the  sampled-data 

model. Both sampled-data system and sampled-data model are  

driven by the scalar function r(t). 

sampled-data model consist  of a closed loop configuration of sampler, 

The sampled-data system and 

data-hold, and continuous system. In the sampled-data system, the 

sampling is assumed to be periodic with period T ,  and the data-hold 

is assumed to  be of zero order. Similarly, the sampled-data model 

has  periodic sampling, of period T , and has  a zero-order data hold. 

The continuous system is, in general, not perfectly known, and our 

broad objective is t o  develop ways for estimating its parameters a s  

n 

well a s  the sampling interval T.  For purposes of later analysis ,  we 

will require that the continuou: model satisfy the continuity and 

differentiability requirements l isted in  Section 1.1. The continuous 

model is given by 

A 

dz" = f(2; p̂ , a t ) ) ,  dt (1 12) 
n 

where 2 and f are n dimensional vectors,  p  ̂ is a n  h dimensional 

vector of parameters, and ^u(t) is a piecewise continuous scalar  

control variable. Note that h z n. In general, superscripts will 

refer to components of vectors,  e .g . ,  9' is defined a s  the  output 

component of the vector 2. The purpose of the modeling procedure is 

to construct a continuous model which is of the  same form a s  the 

continuous system. Therefore, because of t h e  above analytical 

requirements imposed on the continuous model, we will a l so  impose 



the same continuity and differentiability requirements on the 

continuous system. The continuous system is hence assumed to be 

of the form 

where z and f are n dimensional vectors, and the vector of constant 

parameters p is h dimensional. Define the sampled-data system 

(h f- 1 + n) dimensional parameter vector by 

where ' indicates transpose,  and define the sampled-data model 

(h+l+n) dimensional parameter vector by . 
A -  

2 = (p", T,  C)'. (1.15) 

Note that (h+l+n) 5 2 n + 1. Henceforth, we will describe (1.14) 

and (1.15) a s  m dimensional vectors, where m I 2n -k 1. The 

model-matching configuration of either Figure 1 . 2 ,  or Figure 1.3 

will be driven by r(t) , a scalar function, which is required t o  be 

non-zero over the constant iteration interval T . At the end of a 

--- 

particular iteration, the  components of the  parameter vector 9 

will be adjusted to new values according to the particular algorithm 

used in  the study, then the integration will begin over again. Define 

the vector error function by 

E (t; x, 5 ,  r(t)) = v(t; x, r(t)) - 3(t; 2, r(t)) , (1.16) 

where 

v(t; x, r(t)) = z(t; x, rW) + n+t) , (1.17) 
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and where z(t; x, r(t)) and Z(t; 2, r(t)) are the  state vectors of the  

sampled-data system and the sampled-data model respectively, and 

n,(t) is the  state observation noise vector. Define the cost  function 

J(T; x, 2, r(t)) = p ( t ;  x, 2, r(t)) W c (t; x, 2, r(t)) dt (1.18) 
0 

where W is a positive definite weighting matrix and T is the constant 

iteration interval. (In the sequel,  we will often indicate (1.18) by 

either J(T; 2, r(t)) , or J(T; 3) , since x is a constant parameter vector, 

whereas may be adjusted after each iteration. Likewise, equation 

(1.16) will be indicated by E (t; 2). 

(I) Using the estimation configuration of Figure 1.2:  

(a) Determine conditions under which equation (1.18) has  

a unique minimum over T when the  continuous system 
LI 

and the continuous model have the same form and when 

(P, 5)' = Et)'. (1.19) 

(b) Suppose the continuous system is not modeled corrently 

so that either the continuous model and continuous system 

do not agree i n  form, or if they do agree in  form, then the 

parameter vectors (p, 5)' # (3, L )  . Determine whether 

the cost  equation (1.18) then has  a minimum over T.  

Investigate conditions for convergence of the estimate T 

* 

LI 

(c) 

to the true value of T when a s teep  descent approach 

using the  sensitivity difference equations is employed i n  

conjunction with a n  iterative adjustment scheme. A s  i n  (a) 
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_. 
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- 
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-Ea Parameter  Vector: 

- 

+ 

g- 

Figure 1 . 2  Parameter Estimation of a Sampled-Data Sys tem 
by  Model Adjustment 
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assume that sampled-data system and sampled-data model 

are identical except for the sampling intervals. 

(11) Using the  estimation configuration of Figure 1.3: 

(d) Study the application of stochastic approximation to  the 

problem of estimating the  sampling interval T a s  well a s  

other parameters of the  sampled-data system; i .e. , obtain 

estimates x" of the complete sampled-data system 

parameter vector x. 

the observations of the system state  vector d t ) .  

Study the effect on parameter estimation caused by intro- 

ducing a random noise component into each of the 

parameters of the  sampled-data system. 

Assume that the  noise n,(t) corrupts 

(e) 

(111) Using data obtained from human operator experiments (Figure 1.4) : 

(0 Determine whether the human operator has  a sampled-data 

property by employing stochastic approximation to  obtain 

parameter estimates after constructing models to  be used 

i n  the configuration of Figure 1.3. 

By using stochastic approximation, attempt to  improve the  

best estimates of human operator models currently available 

i n  the literature. 

(g) 

1.5 Organization Of The Dissertation 

This dissertation is organized into five chapters and several 

appendices. Chapter 1 gives the general problem statement, back- 

ground material relevact to  the study, objectives of the study, and 
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STATE 

OBSERVATION 

NOISE *,k) 
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' 
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J 

Figure 1 . 3  Parameter Estimation of an Unknown Sampled- 
Data System by Stochastic Approximation 
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Figure 1 . 4  Human Operator Experiment Showing Quantized 
Data Points. 
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restrictions placed on the  study. This chapter corEludes with 

comments on the importance and applicability of the research and its 

influence on the current state of parameter estimation and human 

opera tor mode ling. 

Chapter 2 is concerned with estimating the sampling interval i n  

noise-free systems. Starting with some additional definitions, a 

mathematical bas i s  is developed for conditions under which identifi- 

cation of sampling intervals is possible in  noise-free sampled-data 

systems. Simulation results are presented for both identification and 

estimation of sampling intervals.  Two methods are used: 

Programmed search over a variable set of parameters, and iterative 

steep descent using the sensitivity difference equations of the 

sampling interval and other parameters. 

Chapter 3 introduces the method of stochastic approximation for 

estimating parameters and presents a convergence theorem for the 

estimation problem indicated in  Figure 1.3 together with the  

stochastic approximation algorithm to be used i n  subsequent studies. 

Chapter 4 is concerned with the results of a variety of 

simulations involving parameter estimation by means of stochastic 

approximation. The system complexity ranges from noise-free linear 

systems t o  both noisy linear and nonlinear systems. In the noisy 

systems, a l l  of the parameters, including the sampling interval, 

have random components. In addition, a discussion is given of the 

influence of the character of the input signal and observation noise 
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on biasing the parameter estimates when either of these  signals has  

nonzero mean value. 

Chapter 5 presents the results of applying the stochastic 

approximation algorithm to the special  problem of estimating human 

operator model parameters from actual human operator experimental 

data.  The data were taken from compensatory tracking studies and 

were generated according to the  arrangement of Figure 1.4. 

1.6 Limitations - Of The Study 

A number of limitations apply to the broad objectives s t a t ed  

above. These restrictions fall  into three categories: (1) Restrictions 

imposed by the estimation algorithm. (2) Restrictions imposed by 

the form of the model. (3) Restrictions imposed by the type of 

experiment performed to  furnish the operator data.  

1.6.1 Restrictions Imposed By The Estimation Algorithm 

In this  study three algorithms are employed for parameter 

estimation in  sampled-data systems: 

Programmed search for the  set of parameters which 

minimize the cost  function equation (1.18) . Reference 

Figure 1 . 2 .  

Parameter sensitivity difference equations together with 

s teep descent to minimize  equation (1.18) . Reference 

Figure 1 .2 .  

Stochastic approximation using equation (1.18) a s  the 

basis  of the algorithm. Reference Figure 1.3. 
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While the first technique could conceivably be used in  the  

actual case of noisy observations of the sampled-data system output; 

i. e. , according t o  Figure 1.3, no convergence theorem for t he  

parameter estimates has  been developed for t h i s  application. 

The second technique has  been used for systems with noisy 

observations, however, no convergence theorem is available for 

th i s  application either. Furthermore, the  mathematical complexity 

associated with obtaining the difference equations for high order 

models is time-consuming and error-fraught . 
The third technique, stochastic approximation is a method for 

e s timating the pa ramet er  s of systems under theoretica 1 restrictions 

which, i n  practice, are often realizable. In general, the  cost 

function must be convex, and must have a unique minimum. Also, 

the observation noise must have zero mean value and must be 

uncorrelated with either the outputs of the  sampled-data system 

or the  sampled-data model. If the cost function has  local minima, 

then a preliminary search can be employed to identify them C301. 

After that s tep,  stochastic approximation can be used t o  improve 

the  parameter estimates by using a suitable initial parameter 

estimate vector. Stochastic approximation has  the advantage over 

the previously mentioned techniques that a convergence theorem for 

the parameter estimates is available. This theorem, to be proved in  

Chapter 3 ,  shows that under the above restrictions on noise , 

assuming the unique minimum, and with the restrictions on system 
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and model given in  Section 1.4, that l i m  E(Bn -x) 

is the expectation operator. In addition, for sampled-data systems , 
simulation results indicate that the driving signal,  r(t) of Figure 1 . 3  

should also have zero mean value. Simulation results corroborate 

analysis  and indicate that i f  the  mean value of the observation noise 

is not zero, then a bias in  the parameter estimates will occur. 

= 0 where E( ) . 
IT00 

Other parameter estimation schemes were not tried because of 

the success  enjoyed with stochastic approximation, and because of 

its suitability to the real-world modeling and parameter estimation 

problem. 

1.6.2 Restrictions Imposed By The Form Of The Model -- 

In connection with programmed search, it will be shown i n  

Chapter 2 that the set of model parameters which minimize the cost 

function is not unique, but depends on the  model chosen. Hence 

biased parameter estimates , may occur i f  the continuous system 

and continuous model do not agree i n  form and initial conditions and 

unless the properties of the data hold of the model agree with those 

of the sampled-data system. However , sensitivity of parameter 

estimates to model structure was not analyzed i n  general 

some numerical examples are given. 

although 

Likewise, in  connection with the application of stochastic 

approximation (S .A. )  it is clear that biased parameter estimates may 

occur i f  the form of the sampled-data model and initial conditions 

do not agree with the form of the sampled-data system and init ial  
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conditions. Furthermore , in  the practical c a s e  where one is trying to 

estimate the  parameters of a n  unknown sampled-data system from 

input - output data ,  neither the  form , nor the init ial  conditions , of the 

differential equation of t he  continuous system, nor the properties of the 

data hold may be known. Under these  circumstances , one concludes 

that  biased estimates of parameters of the sampled-data system will 

be the rule. However, th i s  is not a weakness of the stochastic 

approximation method: rather, it is due to uncertainty i n  the modeling. 

In a n  effort t o  overcome th i s  restriction, the technique employed when 

using stochastic approximation t o  estimate the parameters of a n  

unknown sampled-data system , was t o  first choose a closed-loop 

model, adjust the model parameters by S.A. and record the minimum 

cos t  function along with the minimizing parameter vector of the model. 

Other models were then tried and S.A. was used to adjust the 

parameters of each  model. This procedure of modeling and subsequent 

parameter estimation was continued until the point of diminishing 

returns was  reached. Examples of this  procedure, used in  connection 

with modeling input-output data from human operator experiments, 

are  given in  Chapter 5. 

1.6.3 -- Restrictions Imposed By The Human Operator Tracking 

Experiment 

For a n  actual  application of the stochastic approximation method 

it was decided to use data from a n  experiment where a human 

operator controlled dynamic elements i n  a closed loop tracking 

situation as shown in  Figure 1.4. The modeling technique outlined 
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above was employed with considerable success .  This is evidenced by 

the fact that by using stochastic approximation to adjust the 

parameters of a simple model of the  human operator that  a decrease 

i n  the cost function was obtained as  compared t o  the best previous 

estimate published in  the literature. Further decreases were realized 

when more complicated models were used. Despite th i s  success ,  we 

must point out the limitations in  estimates of the parameters of the 

human operator induced by the human operator tracking experiment, 

These are a s  follows: 

(a) The operator performed a specific tracking task .  The 

test resul ts ,  and the parameter estimates derived from 

them, might have been different had the operator been 

performing a number of tracking tasks  in  some repetitive 

sequence. 

Because of the limited amount of test data used i n  the  

modeling and parameter estimation, no account is given 

of the operator's possibly time-varying behavior. 

(b) 

1.7 Applications Of This Dissertation - 
Stochastic approximation is a very general technique for 

estimating the  parameters of sampled-data, as  well as  continuous 

control systems. While it is applied in this  dissertation t o  the  

problem of estimating the sampling interval and other parameters of 

the  human operator, it can just as  well be applied to problems of 

parameter estimation in  all sorts of continuous and sampled-data 

processes.  
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Also, the relatively large improvement (decrease in  cost 

function) accomplished in  this  study by using stochastic approximation 

t o  adjust the parameters of one of the best  current models of t h e  

human operator suggest the possible improvement to be realized i n  

subsequent applications of this  technique to the whole gamut of 

human operator modeling problems including multi-axis control. 
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CHAPTER 2 

ESTIMATION OF SAMPLING INTERVALS AND OTHER PARAMETERS 

IN NOISE-FREE SAMPLED-DATA SYSTEMS 

2 . 1  Introduction 

This chapter presents t he  results of the  init ial  phase of the  

investigation into ways for estimating the  parameters of a closed-loop 

sampled-data system. 

The configuration of Figure 2 . 1  is used and represents the 

estimation problem discussed in  Chapter 1. In th i s  chapter, the  

parameter estimates are  obtained by either programmed search over 

the variable parameters of the model, or by iterative steep descent 

based on using the  sensitivity difference equations of the variable 

parameters of the model. With either method, the purpose is to 

obtain the parameter vector ^x of the sampled-data model which 

minimizes the cost  function 

(2.1) 
2 J (T; x, 2, r(t)) = x, r(t)) - “z(t; 2 ,  r(t))) dt 

where the notation is that given i n  Chapter, and where z1 and 2’ 

are the (scalar) outputs of system and model respectively. We will 

here define the minimizing vector 2 a s  the optimal estimate of the 

parameter vector x of the sampled-data system. 
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Figure 2 . 1  Parameter Estimation of a Sampled-Data System 

by Model Adjustment 
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2.2 Problems For Investiqaticn 

The problems attacked in  this  chapter a re  those which have been 

outlined in  Section 1.4a,  b ,  c. We assume that  the estimator 

configuration of Figure 2 . 1  is used and that the continuous system 

and continuous model 

- -  dz" - f(2, p", at)), dt 

n 

Z(t=O) = 5 (2.3) 

both have the continuity and differentiability properties described i n  

Section 1.1. Further, we  assume that the data holds of sampled-data 

system and sampled-data model (see Figure 2.1) are of zero order, 

and assume that all parameters p of the continuous system (1.1) 

are  constant and that the sampling interval T of the sampled-data 

system is a l so  constant. We assume that r(t) is a suitable nonzero 

function and that the phase of the sampling of the model is adjustable 

so that the sampling of model and system can be made synchronous 

when T = T. 
n 

In th i s  section we seek  to analyze the following problems: 

(1) Assuming that the continuous system and continuous model 

have identical differential equations and that 

(c, 5)  ' = (p, 5 )  ', then determine conditions under which 

the cost function (2.1) will have a unique minimum over 

the estimate T of the sampling interval T a s  T ranges 

over ( 0 I T < 0 0 ) .  

n 

n n 

n 
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(2) Assuming that the system is either not modeled correctly, 

so that for a l l  choices of 5 and C and for a l l  nonzero r(t) 

the functions f( ) and f (  ) are not the same, or ,  i f  it 

n 

n 

n /  

is modeled correctly, then (5, C )  # (p,  C)' , then 

determine whether the cost function (2.1) will have a 

minimum over T for (0 5 T -= 0 0 ) .  

h h 

(3) Assuming that the form of the continuous model agrees 

with that of the continuous system, so that i f  S(t) = u(t) 

and B = p then 

and further assuming that (p", &)'= (p, C)', then represent 

the resulting minimum value of (2.1) over T by 
A 

J, = min J(T; x, 2, r(t)) 
n 

T 
(2.5) 

n 

Assuming next that  (fl, 2;) '# (p,  L,) ', then represent the 

resulting minimum value of (2.1) over T by 
A 

J2 = min J(T; x, 2 ,  r(t)) 
n 

T 

Develop an  analytical relationship between J and J2. 
1 

2.3 Reference Mathematical Basis 

The solutions to  the above problems will be obtained after we 

first establish a reference mathematical bas i s  for the identification of 

the  unknown sampling interval T by means of programmed search 

and the estimation configuration of Figure 2 .1 .  We will first need 
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s o m e  additional definitions to those already given in  Chapter 1 .  We 

assume the estimation configuration of Figure 2 .1 .  

2.3.1 Additional Definitions 
A 

Definition 3~ We say that we have an  optimal estimate T of an  

unknown sampling interval T when the minimization of the  cost  

function (2.1) has  been carried out over s o m e  restricted set of 

candidate models and parameter vectors denoted by 

(fc, 5 ,  %(t)f; 2Ir 
the set of second order systems with variable coefficients, 

A 

An example of a restricted set of models is 
V 

variable initial conditions, and variable transport lag together 

with specified sets of these parameters. 

Definition 4: We say that we have a n  optimum estimate T of a n  

unknown sampling interval T when the minimization of the cost  

function (2.1) has  been carried out for a l l  possible choices of 

candidate models, parameter vectors and init ial  conditions. 

(Note: From definition 1, Chapter 1, it is clear that the above 

A 

e 

optimum estimate for the  noise-free case  considered i n  this  

chapter is the same a s  the identification of Chapter 1.) 

2.3.2 The Differential Equation Of The Continuous System 

For our results i n  sampling interval identification, we will 

require a unique solution of (2.1) for specified parameter vector p ,  

initial condition vector 5 ,  and control vector function u(t) . In 

addition, for the treatment of the deterministic gradient method in  

this  chapter, as  well a s  the treatment by stochastic approximation 
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in  Chapter 3 ,  we will require that the partial derivatives of the 

solution of (2.1) , with respect t o  parameters and initial conditions , 

exist and be continuous. The following theorem is essentially 

stated i n  [321. The extension to include controls is stated in  C331. 

h Theorem 2 . 1  C32 , 33 , 801: Let Zn, and P 

Euclidian spaces  En and E 

t interval. Let  u(t) be a piecewise continuous function from 

(T1 , T2) into Er. For any t i n  (T1 ,T$ , define the  vector of values 

be open sets in  the 

2 
h respectively. Let  (T1, T ) be a n  open 

of u(t) by u ; u6Er. Consider the 

z(t=O) = 5 I (2.7) dz  
dt - = f(t ,  2, PI u(t)); 

where z and f are  n vectors,  p is a constant parameter vector 

belonging t o  Ph, and 5 

ing t o  Zn.  Suppose the 

continuous from (T1 ,T2) 

is a constant initial condition vector belong- 
i functions f , afi/azg, and afi/apj are  

x zn x P , x h 1 into E (i, g ,=  1, 2,, ..., n), 
h ( j  = p,  2 , .  . ,h). Let po belong t o  P and to belong to (T1, T2).  

Le t  u (t) be a chosen piecewise continuous function taking its 

vector of values u 
0 

i n  Era Choose a fixed p = po. Let 9 be the 0 

solution of (2.7) on a t interval (t < t I t2) belonging to (T1, T2). 1- 
Then there exists a b> 0 such that for any (T, 5 , p,  u) belonging 

to a domain Q, , where 

Q,: tl ' T < t ll$(T) - 511 4- Ifp - poll 4- iIU(T) - U o ( ~ ) I I  c6 , 2 '  
(2.8) 

there exists a unique solution 4, of (2.7) on t l 5  t s t 

(tl , t2) is a subset of (T1, T2) , satisfying +(O; p,  u(t) , 5 )  = 5 .  

where 2 '  
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1 Moreover, + is of c l a s s  C on Q i .e. ,  t he  partial derivatives 

ati/azg, a +i/3 t ,  and a+’/apj a re  continuous functions on the  

(n + h + r + 2) dimensional domain Q,, where 

2: 

Q,: ( t l< t <  t2) and ( T ,  5 ,  p, u) belong toQ1.  

Remark 1: The theorem simply states that  i f  a solution exists, then 

it is unique and has  the  properties described. 

Remark 2: The continuous model f ( - ) is assumed to be identical 

i n  form to the continuous system f (  ), hence the same theorem 

h 

applied to it a lso.  

The existence and continuity of the  partial derivatives 

d + i / a t  (of the solution) will be required later. i n  this  chapter when 

we treat dynamic sensitivity difference equations and employ the 
I 

gradient search technique to  obtain parameter estimates.  

Remark 4: The existence and continuity of the partial a+i/azg 

implies the existence and continuity of the partials a+i/a5g with 

respect to  initial conditions C801. The existence and continuity 

of the latter a s  well a s  the existence and continuity of the partials 

a+i/apj will be required when treating the estimation of the 

sampling interval and other parameters of the sampled-data system 

by means of the sensitivity difference equations and gradient 

technique later i n  this chapter. The same comments apply to the 

treatment of the estimation problem by stochastic approximation: 

th i s  will be considered in  Chapter 3 .  

Remark 5: When (2.7) is a linear system, the  above results are  global: 

i.e., they hold for a l l  p ,  5 , and choice of piecewise continuous 
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control function u(t) C331. 

Remark 6: The proof (Reference C331) requires that the components of 
h 

z ,  p, and u(t) lie i n  closed balls in  Zn, P and Er respectively. 

Closed balls are compact and convex C6.71, hence p 'mus t  belong t o  

a compact convex set. 

The above theorem will now be applied to  the problem of 

identifying an unknown sampling period. 

2.3.3 Theorems For The Identification Of A Samplinc: Period Wh- 

Using Noise-Free Model-Matching 

Consider the  sampled-data system and sampled-data model in 

the model-matching configuration of Figure 2 . 1  where each consis ts  

of a periodic sampler, data-hold, and continuous dynamic system 

in a closed loop configuration with negative feedback from the  

scalar output variable. When the sampling interval T is the only 

unknown , we have the following theorems: 

Theorem 2 . 2  

data system and sampled-data model described by Figure 2 . 1 .  

Assume tha t  the continuous system and continuous model are of 

Assume the model-matching configuration of sampled- 

identical form , with equal parameter vectors, exclusive of the 

sampling intervals T and T I  and with equal initial condition vectors. 

Assume that the sampling pulse train of the sampled-data model is 

n 

given by 

p(t; T) = r a ( t  - kiT - YT) 

k2=0 
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where [-1/2 5 6 s: 1/21 and 6( ) is the Dirac delta function, and 

k 

sampling instants of sampled-data system and sampled-data model 

synchronous when T = T by adjusting the phase by k1YlT. Assume 

is a n  integer 0 ,  1, 2 ,  . . , so that it is possible t o  make the 2 

n n 

that  r(t) is a non-zero piecewise continuous function, and assume 

that f( ) and f( ) are as described in Theorem 2.1. Let T >>T, 

and T>>T. Thennecessary and sufficient to identify the unknown 

sampling interval T is that (2.1) is zero for T > O ;  i .e.,  

n 

n 

1 n 

and T is given by the T for which (2.10) is true. 

Proof (Sufficiency): Suppose ,? = T and for [-1/2 s Y 5 1/21 

that the impulse trains are  synchronous, yet J(T; x, x, r(t)) # 0. 

From the hypothesis, the solutions of the differential equations of 

the continuous system and continuous model, (2.2) and (2.3) 

respectively, are deterministic and identical when started from 

identical init ial  conditions and when the s y s t e m  and model are  

noise free. Consider the  sampling intervals following the initial 

output from the hold devices. These may be visualized by reference 

t o  Figure 2 .2 .  (The data holds have been taken as  zero-order.) 

The init ial  sampling impulses are  coincident. From the 

A 

Since T and T are the only parameters of interest here, we will 
here designate z(t; x, r(t)) by z(t; T) . Similarly, for Z(t; 2, r(t)) 
we will use Z(t; f). 

1 
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I t (Seconds) 
0 

I k,T~ (Seconds) 
0 1  2 3 4 5 6 7 0 9 - 1 0  

1 k2f iSecorrds) 
0 1 2 3 4 5 6 7 8 9 1 0  

b? (Seconds) 
0 0  I 2 3 4 5 6 7 8 9 IO 

kr 
0 0  I 2 3 4 5 6 7 8 9 IO 

Notes: I )  Sampling occurs synchronously between B ond C . 
2) Sampling does not occur synchronously between B ond'0. 

Figure 2 . 2  Examples of Synchronous and Non-Synchronous 
Sampling 
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A 

uniqueness theorem, the outputs z(t; T) and 2(t; T) must be identical 

for identical initial conditions and parameters since they are the 

solutions of identical differential equations; i .e. the  solutions of 

(2.2) and (2 .3)  are 

and 

(2.11) 

(2.12) 

respectively, where k and k are integers belonging t o  the  

sequence (0 I 1 2 I . , . .) . Now recall  the feedback relationships 
1 2 

u(k lT) = r(klT) - z 1 (klT; T) 

and 

u^(k2T) = r(k2T) - 2'(k2T; T) 

(2.13) 

(2.14) 

1 1 A *  
n 

Since kl = kZl  and T = T,  then z (klT; T) = 3 (k2T; T) again from 

the uniqueness of the  solutions. (This is clear i f  we consider that  
A 

both systems are started together at k T = 0 = k2T.) Also, 1 
r(k?) = r(k2T); hence 

CI 

u(klT) = fi(k2T), (2.15) 

Thus I 

n n 

(2.16) 

LI 

Ilz(t; T) - Z(t; T)II 5 - f(z",p^,^u(k2T))II~=0. 

a s  a consequence of the  uniqueness theorem. But I I -  I I  cannot be <O, 
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hence 
n 

IIz(t; T) - z^(t; T)H2 = 0 (2.17) 

which implies that each component of the  vector z(klT; T)- 2(kZT; T) 

is zero Therefore, from (2.1) 

(2.18) " 2  J(T; x, = T) - 8 ( t ;  T)) dt = 0 

and this  contradicts the assumption that J(T; x, 3 ,  r(t)) # 0 for all 
* 

t c [ O ,  T) , and for T > 0 and both T and T << T ,  

Necessity: Suppose, from (2.1) 

Then, from (2.13), 

n 

that (2.13) holds, but T # T.  

n 

(2 19) -1 z (t; T) - z (t; T) = 0 (a.e.1 1 

1 l n  But z (t; T) and 2 (t; T) are 
n 

for t c  [0, .] where T>> T ,  T. 

respectively the first components of the solution vectors of (2.2) 

and (2.3) for identical initial conditions and parameters, but with 
A 

possibly different control signals u(kl T) and u(k2T). 

T # T implies Ci(k2T) does not always equal u(klT). 

Note: 

From the 
h A 

1 1 hypothesis on r(t) we know that z (t; T) and z (t; T) cannot be 

zero on the  entire interval [0 , T ]  . From the uniqueness theorem and 

the hypothesis on the adjustability of the phase of the  impulse train 

of the model with reference to  the impulse train of the  system 

sampler, (2.9), this  means a contradiction: That is ,  assuming 

identical initial conditions, then the hypothesis of (2.18) can  be 

rewritten as  
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1 
where ( ) 

difference of 

here indicates the? first component (output) of the 

the  solution vectors. Then (2.20) implies that the  

integrand is zero 

But s ince each differential equation (2.2) and (2.3),  has a unique 
n 

solution for a particular u(t) , (2 .2  1) implies that  u(klT) = ^u(kZT) 
A h 

and therefore that klT = k T ,  and hence that T = T ,  since we 2 
start with kl  = k2 and the same initial data and parameters. 

Theorem 2 . 3 :  Assuming the hypothesis of Theorem 2 . 2 ,  then (2.1) 

A A 

on a T interval; i.e. , J(T; x, 2 ,  r(t)) is zero for one value of T only. 

Proof: This follows directly from the uniqueness of the solutions of 

(2.2) and (2.3). First , the init ial  conditions and the parameters of 

the sampled-data system and the sampled-data model are  the same 

except possibly T # T. The solutions 

can be identical only i f  T = T,  and for no other value of T.  Hence, 

there is no neighborhood of T for which J(T;x, 2 ,  r(t)) can be zero 

n h 

Start at t = 0 = klT = k2T. 
CI 

A 

for the  above construction. 
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Programmed Search For Optimal E s t i m a t e  Of T .  
t 

Conjecture: When (2.2) and (2.3) are each linear systems, and the 

parameter vectors and init ial  condition vectors are respectively 

equal,  then J(T; x, 2 ,  r(t)) is convex in  T .  A number of demonstra- 

tions of th i s  conjecture are given i n  the sequel. 

2.4 Simulation Results for Proarammed Search 

Experimental digital studies were made to record the  cost 

function J(T; x, 2, r(t)) as a function of t h e  various parameters of 

the continuous model for the case  of c lose model matching and a l so  

for the case of poor model matching. Transfer functions used are  

given in Table 2.1. 

Table 2.1: Transfer Functions Of Continuous System And 

I System 

- 1 .o I 
S 

( s  + 2) 
s(s + 1) 

-0.1s + e a  
sts  + 1) 

-0. IS( 
s(s + 1) 

e s + 2  

I~ s(s + 1) 

Mode 1 
n 

K - 
S 

ii ( s  + 2) 
s(s + 1) 

A -o.ls( ) K e  s + 2  
s ( s  + 1) 
SI 

K - 
S 

Figure 
Number 

2.3 
2.4 

2.5 
2.6 

2.7 

2.8 

2.9  

Note: A l l  init ial  conditions are  zero. I 
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Model parameters which were varied included sampling interval T ,  

gain,  and transport lag. The simulations used impulse sampling and 

zero-order data holds. The sampling interval was held constant 

over each iteration interval (7).  

synchronous when T = T in  all c a s e s .  It was found that non- 

synchronous sampling, when T = T ,  had very little effect on the 

The sampling instants were 
n 

n 

graphical resul ts ,  and therefore these results are  not reported here 

Figures 2.3 and 2.5 verify the Identification Theorems. These 

figures a l s o  show that when the system and model agree in  form but 

differ by gain,  then the cost curve is minimized a t  some T other 

than T = T. 

A 

A 

This is a l so  the case when the  form of the model does 

not match the system, as in  the case for Figures 2.7 and 2.9. 

Note, in  Figure 2.7, that  the presence of a transport lag in  the 

system (but not i n  the  model) causes  a bias i n  the estimate of T .  

Figure 2.9 shows the effect of a large mismatch between 

continuous system and continuous model. While t h e  cost curves are 

convex, the relatively shallow minimum indicates the  mismatch. 

2.5 Iterative Gradient Search 

Again, consider the noise-free modeling scheme of Figure 2 .1 .  

Assume a zero-order data hold and  periodic impulse sampling with 

unknown period T and that the  form and order of the  continuous 

system is known: however, the 'coefficients of the differential 

equation of that system must be estimated. The sampling interval T 

is unknown and it is desired to develop a method for determining an  
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Discrete adjustment and reset 

Minimizing f is shown 

J 

Figure  2 . 3  Programmed Search  F o r  T - First Order  
Sys tem - Model Match 
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Figure  2.4 Constant Cost Contours - First Order  System 
Matched By First Orde r  Model 
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/ 
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Figure 2 . 5  Programmed Search For T. Second Order System 
And Model. 
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Figure 2 . 6  Constant Cost Contours-Second Order  
System Matched By Second Order  Model 
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J 

Figure 2 .7  Programmed Search  F o r  T .  System Wi th  
T ram port Lag -Model Without T r a m  port Lag. 
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Figure 2 . 8  Programmed Search  F o r  T.  Both System And 
Model Have Transport  Lag. 
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Figure  2 . 9  Programmed Search  For T. Mismatch 
Of Second Order  Sys tem By First Order  Model 
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estimate of T a s  well as  other system parameters by employing a 

gradient search procedure. As before, it is assumed that the system 

is noise-free and that only the output variable of the system is 

available. A discrete gradient method will be used i n  order to avoid 

the  mathematical difficulty encountered when a gradient operation is 

attempted on either a time-varying scalar or vector C34l .  The 

procedure will be t o  find the  gradient of the cost  function with 

respect t o  the variable model parameters and then increment each  of 

the  model parameters by an amount proportional to the gradient in 

order t o  eventually minimize the cost  function. The model 

parameters and the  sampling interval T are varied, a s  necessary,  only 

at  the end of each iteration cycle and are then held fixed during the  

next iteration cycle. While discrete gradient adjustment techniques 

have been used previously for model coefficient adjustment and 

subsequent system parameter identification C341, the  extension to  the 

problem of determining a unknown sampling frequency has not been 

A 

previously reported. The sampling interval global sensitivity 

function which is employed was defined and discussed by Bekey and 

Tomovic C8l .  

From (2.1) the  scalar cost  function is 

Fixing 7 and x, (2 -23) will, be designated by J(2, r(t)) Nbte that 

z1 and 2’ are t h e  scalar output variables of the  nth order system 
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and the nth order model respectively. We apply the gradient operator 

(with respect t o  the sampled-data model adjustable parameter vector 2) 

to  J i n  order t o  obtain the m dimensional gradient vector 

corresponding to  the components of the  m dimensional model 

parameter vector 

(2.25) 

Recall from Chapter 1, that m = (h+l+n) 5 2n +l .  The components 

of ^x will then be adjusted i n  accordance with the sign and magnitude 

of the components of (2.24) and the iteration over [O,.] will begin 

again. 

Two distinct methods of calculating the components of (2.24) 

will be described. The first is an approximate method 1341 yielding 

the  discrete approximation to  the ith component of the parameter 

vector 2 for the th iterative computation of the parameter vector. 

With appropriate notational simplification, this is given by 

a J  (2 j ,r(t)) J(j i j  1 I I 2ji-1,2,i +A?,', . ... ,a.m) -J("x.) 
h. ' (2.2G - - a$ A j i i  

j 
(i = 1, 2 ,  .. .., m) 

Note that i f  the parameter vector is m dimensional, then m+l 

computations of (2.26) are required. This method is well-suited to  

hybrid computation. 
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The second method, better suited to strictly iterative mode 

analog computation, will extend use of the discrete sensitivity 

difference equations a s  defined by Bekey and Tomovic C81. The 

development leading to them is a s  follows: Perform the differentiation 

indicated by (2.24) to obtain 

1 Details of calculating the vector b2 2 ( 

discussed.  We first point out that the iterative adjustment procedure 

)] will subsequently be 

is carried out in the steps 

(a) Start with an initial parameter vector 

(2.28) 

where the ( ) 

Obtain the components of the graident vector from either 

(2.26) or (2.27) . Call  th i s  V2 [J(5?l ,r(t))] 

Compute the  new parameter vector from the iterative s teep 

refers to the  first iteration. 1 
(b) 

(c) 

descent equation C341 

(2.29) 

where K 

selected,  (2.29) is called the steepest descent 

equation C3 71. 

The general parameter correction formula is 

is a matrix, in  general. When K1 is optimally 1 

(d) 

(2.30) 



51 

There are  a variety of ways of selecting Kn and Table 2 .2  is a 

collection of some of the expressions €or this  matrix [34,35,36,371. 

See the Appendix for details .  Mention should also be made of the 

optimum gradient method of McGhee C381 although the scope of the 

present study and s p a c e  limitations make it unsuited for discussion 

here 

Table 2.2: Gain Matrix Expressions 

Newton-Raphson: 

Gauss  -Newton: 

Gauss -Newton (modified) : 

SteeF, De scent: 

Notes 

Kn= 2Hn -1 

c 

Kn= 

%= 

- -1 

-1 

A 

2) u(k2T) is solution of the  dyna- 
m i c  sensitivity difference 
equation of the model. 

3) I is the  unit matrix. 

4) n is the  iteration number. 

The components of the gradient vector V,[zl( )I i n  (2.27) 
- - 

can be evaluated a t  the end of every iteration interval 10 ,T J by 

using the approach suggested by Bekey and Tomovic L81 which 

employs sensitivity analysis and difference equations. A s  pointed 

out  i n  L34 f t h e  parameters must be held constant over a n  interation 
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interval 0 ,T , otherwise the  gradient operation is not defined. The 

difference equation approach is well-suited to this  requirement, and 

is formulated a s  follows: 134,86,873 To the  solution of the  vector 

[ I  

differential equation to the  model of Figure 2.1 and for the initial 

conditions vector 5 there is a vector difference equation representing 

the  solution at the particular sampling instant t = k2T; 

(k2 = 0 ,  1, 2 ,  

continuous model for t &  k2T is 

A 

A 

. .) . From (2 . 3) the differential equation of the  
A 

The difference equation representation of (2.31) is chosen i n  such a 

way that it describes t h e  solution of (2.31) a t  the sampling instants.  

One way to obtain the difference equation is to use  the continuous 

solution of (2.31) for t e(k2?, (k2+1)^T) . This is 

A 

For the feedback configuration of Figure 2 . 1, and for t = ((k2+1)T-E) 

where e is small and positive, we will represent (2.32) by the  

difference equation 

4 

z((k2+l)?; k2?,%,2(k2?) ,r(k2?)) A ?  ,3,?,r(k2?)] (2.33) 

The correspondence between the terms of (2.33) and (2.32) is clear. 

Note that (2.33) is an  n vector. Following bekey and Tomovic C81, 

the vector sensitivity difference equations required for (2.27) are  



53 

next obtained. We first translate (2.33) back in  t i m e  E871 to obtain 
-. 

(2 . 34) 
and then apply the  parameter gradient operator, defined by 

LI n 2 *  

to ( 2 . 3 4 ) .  (In ( 2 . 3 5 ) ,  C 0  _a b(k2T=O)). Adopting a more concise 

notation , the three sets of differential equations resulting from 

applying (2 .35)  to (2 . 34) are  written 

(2 . 38) 

where (i, g = 1, 2 ,  ..., n) and (j = 1, 2, . o.. , h), and where 

the partial derivatives (influence functions) 
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of % with respect t o  the parameters, initial conditions, and sampling 

interval a re  to be regarded a s  the perturbations of the solutions 2 

when evaluated a t  k2TE [O , T] due to perturbation of the particular 
A 

parameter a t  k2T = 0. Thus, we define 

(2 . 39) 

(2 40) 

a s  the discrete sensitivity functions due t o  parameter and initial 

condition variations e The existence and continuity of the above 

derivatives is guaranteed by the requirements on f (  * ) stated in  

Theorem 2 . 1. Again , simplifying notational dependence , we define 

A 

n n  A 

($(k2 (T+AT)) - ̂ zi(k2 T)) 
ui;(k2) = lkm 15 I (2.41) 

AT40 A T  

as the discrete sensitivity function due to sampling interval 

(2.42) 

variation. The existence and continuity of this derivative is assured 

if we require that F ( ) be differentiable with respect t o  T o  
A “i 



55 

Bekey and Tomovic C81 have termed (2.42) the global sensitivity 

function for the sampling interval, 

The init ial  conditions for the discrete sensitivity functions 

( 2 . 3 9 ,  ( 2 , 4 0 ) ,  and (2 .41)  are obtained by determining the effect of 

changing either a parameter, the sampling interval, or  a n  init ial  

condition at  the beginning of the  iteration interval, i,e. , when 

k2T = 0. Thus 
h 

i 
- j  P 

u (0) = O  (i = 1 ,  2 ,  ..., n) ,  ( j  = 1 ,  2 ,  ..., h) (2 .43)  

(2 . 44) 

(2.45) i u g ( ~ )  =I.O (i = g) (i, g = I ,  2, ..., n) 

= 0 (i # g) 

We can now write the difference equations (2 .36) ,  (2 .37)  , and 

(2 .38)  i n  discrete sensitivity function notation a s  

i 
ol P 

u t o )  = 0. (2 .46) 
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A 

& ( ( k2 - 1) ;); 5, ?, r( ( k2 - 1) "4 
+ A  

aT 

These are the  discrete sensitivity differenae equations for t he  model- 

matching configuration of Figure 2 1. 

It is shown in  the Appendix that for a simple sinusoidal driving 

function 

r(t) = A s in  w t  (2 0 49) 
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that the corresponding derivative term of (2.47) is 

(2 . 50) 

Since this  holds for a simple sinusoid,  then for any r(t) having a 

Fourier se r ies  expansion (in terms of s ines  and cosines) it is clear 

that  (2.50) would also apply. 

Recalling that we desire t he  vector V$%l(t; 2 ,  r(t)! for use  in  

(2 2 7) , we can set up the  discrete sensitivity equations (2.46) , 
i (2.47), and (2.48) , along with (2.50) and solve for ui (k ) ,  un(k2) ,  

and ui (k ) ., Then the  components u1 (k ) , u -(k2) , 

- j  2 P 
1 1 and u (k ) 
T '0" n j  2 

P Ag 2 
50 

would be used i n  (2,27). It is helpful to observe I81 that t he  

structures of the models necessary t o  generate ui (k ) and u f  (k ) 
n j  P 2 '0" 

are the  same a s  the  model of Figure 2.1. The model required to 

generate u i (k2 )  is complicated, however, by the second and third 

terms of (2.47) . This wi l l  be made clearer when dealing with. the 

example to follow. 

T 

We can now write the  representation for (2.27) in  terms of t he  

discrete sensitivity functions so that  
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can be represented by 

where k2 is such  that k2T e[O, 7). When k2T = 7 , the parame :er 

vector is updated via (2.30) and the next iteration is begun. The 

mechanization of (2.30) and (2 . 5 1) will be illustrated by an  

example 

t o  remark that the difference equation representation for linear and 

nonlinear systems leading to t h e  general equations (2.33) and (2.34) 

has  been discussed by Kalman and Bertram 1861. Bekey E871 has 

Before presenting that example however, it is pertinent 
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shown how to  obtain t h e  difference equation (2 . 33) by using either 

the  z-transform of the continuous linear elements, or by working 

directly from the control system diagram by first  assigning s ta te  

variables. The latter method is particularly well-suited to setting 

up the  difference equations for nonlinear systems where the  z-transform 

does not, i n  general, exist for every element. Note that once (2.51) 

has  been calculated, then the updated parameter estimate can be 

obtained from (2 . 30): 

A = x - Knv9 A 

n+l n X (2 30) 

2 5 1 Example of Gradient Search 

Results a re  available in  the  study of the use  of the gradient 

technique to identify the unknown parameters of a closed loop 

sampled data system when these parameters include the unknown 

sampling interval T 

Example 1: Let the continuous system and continuous model of 

Figure 2.1 be linear with differential equations a s  follows: 

z(t=o) = 0 (2 . 52) d z  dt = K u (t); System: 

Model: dt - K 0 (t); “zt=o) = 0 (2 . 53) d2 * - -  

It is desired to estimate the sampling interval T of the  sampled-data 

system of Figure 2.1 and the gain K. A s teep  descent mechanization 

will be used to vary the estimates 3 and of the  model. 
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Using the  zero-order data hold, the output at the sampling 
n 

instants  k2T of the model loop is obtained, in  this  case, by 

z-transforming the combination of the Laplace transform of (2 . 53) 

and the zero-order data hold with the  result: 

n n n  

where Z( ) indicates the z-transform operation. Using (2.541, 

the  forward loop transfer function of the  model is 

The resulting difference equation for the forward loop is 

n n n n  n A1 z ((k2+1)T) = n 1  z (k2T) + T K ̂u (kZT). 

(k2 = O ,  1, 2, ... 
Now 

n A n ^u(k2T) = r(k2T) - n 1  z (k2T). 

(kz = 0 ,  1, 2 ,  ... 
Substituting (2.57) into (2,561, the  output is 

n n n  n n n 1  z ((k2+1)T) = ̂ zl(k2T) + T K [r(k2T) - il(k,T)] , 

n n n  n n  n = n 1  z (k2T) [l - T K] + T K r(k2T), 

(2.55) 

(2.56) 

(2 . 57) 

(k2 = O ,  1, 2 ,  ... ) 
with the initial condition ^zl(t=O) = 0. 
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The associated sensitivity di€ference equations are  obtained 

by using (2.46) , (2.471, and (2.48) along with (2.39), (2.40), and 

(2.41) I and (2 . 50) . The sensitivity difference equation for the 

model sampling interval T is 
A 

t i  (t) n 1 
uF((k2+1)T) = [1 - i ]  u\(k2i) + ] n 

t=k2T 

where ( k 2 = O l  1, 2 ,  mo..)m 

The sensitivity difference equation for the model gain is  

1 *  6 C I A  

u i  ((k2+l)T) = (1-T K)ug (k2T) + T K 

(k2 = O ,  1, 2 ,  .... 

(2 ., 60) 

1. Ut(0) = 0. 

(2.61) 

As remarked previously, the structure of the  sensitivity model for 

this  parameter is identical to the structure of the  original model 

(2.59). Shifting (2.60) and (2.61) backward, a s  was done with 

(2.3 4) when developing the theoretical sensitivity difference 

equations, we have 



n 

r((k2-1)T) - “z((k2-1)T) 
& 

L T J 

uT(0) L = 0 ,  

(k2 = 1, 2, ......), 
and 

uk(k2T) = 11 - T K] $2 ((k2-1)T) 

n 

n r((k2-1)T) - z 
+ T K [ ---- A 

K 

L. u$O) = 0, 

(2.62) 

(2.63) 

k2 = 1 ,  2, 3 ,  .... 1. 

These a re  the  discrete sensitivity equations which are actually 

solved, and furnish a concrete example of the abstract equations 

given by (2.46) and (2.47) . The equations are  solved by simulation 

and the solutions are substituted into (2.51) . The parameter 

vector 2 

algorithm (2 . 30) 

for t h e  estimate of x is then obtained from the n+l 

The difference equations were programmed for solution in  this  

case by noting the  similarity of (2.62) and (2 . 63) to (2.59) . The 

latter is a difference equation representation of a continuous 
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system at sampling instants;  therefore , t he  sensitivity difference 

equations were a l s o  programmed a s  continuous systems . The 

schematic of the iterative adjustment scheme for T alone is shown 

in  Figure 2 10 , and the schematic for the iterative adjustment 

scheme for both T and K is given by Figure 2.11. 

ZI 

A A 

Example 2: Let the continuous sytem and continuous model of 

Figure 2 .1  be nonlinear with differential equations as follows: 

(2.64) dz  System: = K[u(t)I3 : z(t=O) = 0 

A 

Model: e dt = K[G(t)l3 ; ‘ i ( t=O) = 0 (2 . 65) 

The parameters to be estimated are T and K. The estimates a re  

T and K ,  
e A 

This example will be limited to showing the  formulation of the 

discrete sensitivity difference equations for a nonlinear system. 

N o  simulation results will be presented. Following Bekey C81, the 

difference equation describing the  output of the model a t  the  
A 

sampling instants t=(k +1)T can 

after substituting (2.65) into the 
2 be obtained directly 

loop: 

from Figure 2.1 

A A A A  CI A 

fl((k2+1)T)=2’(k2T), + K T [r(k2T) -i?k2T)l3; ‘i(0) = 0 .  (2.66) 

Shifting backward to obtain the difference equation a s  a function of 

the las t  available samples of r(t) and z I 
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n 

Z Ck2T) G2 ((k2-1)T + K T r((k2-1)T) -1 1 

Sl(0) = 0 

(k2 = 1, 2 ,  3, ... 1. 

Hence , from (2 . 33) , we can identify 

(2.67) 

n 3  
n n n  n 

=Z -1 ((k2-1)T) + K T [r((kZ-l)T) -^zl(k,-l)T)] 

(2 . 68) -1 z (t=o) = 0 

A 

where is the scalar  parameter K,  and where (k2 = 1 , 2, 3 , ... .) . 
Using (2.6 7) and (2.68), and employing (2  . 46) - (2 48) along with 

(2 .39)  - (2.41) and (2.43) - (2.45) and (2.50) , the  sensitivity 

difference equations for the parameters T and K are 
A n 

h n 

u!$\k2T) = - ~ ~ ( ( k 2 - l ) T ) ]  '1 
n 

r((k2-1)T) -~'((k,-l)T)] (2.69) 

LI 

A 
+ 3 ^K [r((k2-1)T) - z1(~k2-1)T)] 

1 y ( 0 )  = 0 
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and 

uk(k,?) = [1 - 3??[((k2-1)?) - “z((k2-1)?]2]uk((k2-1)?) 
(2 . 70) 

- 3’((k2-l)?j] ; U~(O)=P  1 I 

(k2 = 1, 2, 3 1  ..... 1. 

The same procedure would be employed to solve these  sensit ivity 

difference equations and use  their solution to obtain components of 

the parameter correction gradient vector (for t h e  new parameter 

estimate %n+l) as  was done with Example 1. 

2 . 5.2 Results Of Gradient Search Studies (Examde 1 Only) 

The gradient search studies were divided into two phases;  the  
CI, 

first was a gradient search over T alone with K held fixed and 

equal t o  K = 1.0. The second was a simultaneous gradient search 

over both T and K. In both phases the  resul ts  were obtained via 
A A 

the DSL/SO simulation program. The results of the gradient search 

over T alone are shown in  Figure 2 . 10 

(2.30) was selected as  a fixed constant which m a n s  that a steep 

A 

The gain factor K1 of 

descent parameter adjustment scheme was followed. 

Figure 2 . 11 shows the schematic for the  two parameter 
A - 

gradient search; i.e . , over both T and K. 

Figure 2 . 12  shows the results of the  two parameter gradient 

search for Example 1. 

It is felt  that  these  results are  more of academic interest  than 

practical interest  at t h e  present t i m e  because of the  following 

reasons : 
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It is generally easier  and more economical of programming 

effort and computer t i m e  to  utilize programmed search to 

both obtain the optimal set of model parameters for a given 

m3del and than it is to construct separate gradient tracker 

programs for each model under consideration. 

There is considerable coupling between the parameters in  

even the simple case  of the gradient search over two 

parameters. For example, it was found that convergence 

would not occur for every set of init ial  values (T 
c \ L I  

K1 ,) 

without the incorporation of 03 nsiderable logic t o  

automatically adjust  the gain factor 

prevent T from going negative. 

a s  well a s  

(The latter event caused 
rr 

the  search t o  terminate by the nature of the DSL/SO 

program .I 
Gradient optimization techniques are really best suited to  

situations where a model or system of fixed form but 

variable coefficients must be adjusted to  sat isfy some 

optimization criterion. The present task  initiated i n  this 

report is somewhat broader in scope: It is to  find the 

combination of model form and parameter values together 

with the value of sampling interval which yields the 

absolute minimum of J( * ) 

The sensitivity difference equation approach is not suited 

to  modeling situations where system observations are 

noisy. N o  convergence proof is available. A more 
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Figure 2.10 Gradient Search For Estimate  Of T 



68 

I1 

<2- 
=W.rr 

<x- 

+ 

22 
c 
0 

.r( c, 
ld 
k 
0) 

Q 

c, -4 

e 
l 

n 
0 

H 
0 

k 
Q) > 
0 

U 

: 

i? 

.r( c, 

.I4 c, 
Q 

k 
e, 
k 
ld 
m 
Q 

V 
$. 
V 
m 
fi 
0 

ld 
k 
M 
Q 
c, e 
.r( 

-4 

.r( c, 

4 
4 

m 
Q 
c, 

4.f 
d 
(d 
c, 

2 
0 
V 

ld 
m 

z 
.r( 

e, 

2 
Q c 

2i rn 
s 
m 

c 
Q) 
V 
m 
Q a 

.r( 

c, 

i? 
4 
Q 

m 



69 

T, = 1.0 
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Figure  2.12 Gradient Search  F o r  Estimate Of Both 
Sampling Interval (T) And Gain (K) In 
First Orde r  System By Means Of A First- 
Order  Model 
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suitable approach to  this problem would employ 

stochastic approximation. This is discussed in  Chapter 3 . 
2.6 Summary Of Resuits Of Noise-Free Sirnulatiom 

This section summarizes the respective advantages of 

programmed search and iterative gradient search . Generally speaking, 

the programmed search is t o  be preferred to  the sensitivity equation 

formulation of the gradient search for the parameter estimates. This 

is because one does not, in  general, know the exact form of the 

system well  enough ahead of t i m e  to  make it worth the extra 

effort necessary to  mechanize the gradient search sensitivity 

difference equations. In addition, the sensitivity method requires 

the  mechanization of one additional model circuit for each estimated 

parameter. This requirement is obviated, however, i f  the approxima- 

t ion to  the gradient is used, a s  given by (2.26). In this  c a s e ,  

the programmed search and gradient method are probably on a par 

a s  far a s  equipment and programming t i m e  are concerned. 

Iterative gradient search is useful a l so  when optimizing the 

parameters of a particular model. This situation is  typical of the 

adaptive control problem . 
In the next chapter we will present a discussion of stochastic 

approximation, a technique which is gradient-like in  essence ,  but 

can be used to treat  modeling situations where the  observations are 

noisy . 
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3.1 

CHAPTER 3 

STOCHASTIC APPROXIMATION AND 

SAMPLED-DATA SYSTEM PARAMETER ESTIMATION 

Introduction 

Stochastic approximation is a recursive estimation procedure 

which can  be applied to the problem of either (1) finding the 

parameter which causes  a regression function to take on some 

preassigned value,  or (2) finding the value of a parameter which 

maximizes (minimizes) the regression function. That is, suppose for 

every real  valued parameter x,  the observed random variable 

Y = Y(x) , denoting the value of a response to an experiment carried 

out a t  a controlled parameter level x, has  the  conditional distribution 
1 function H(y tx), defined by L40,  41 ,  881  

and the regression function, defined E881 a s  the  conditional 

expectation of Y for the  given x, written a s  

m ,- 

The notation u s e d herein is that which is standard for the 
stochastic approximation literature 
usual notation found i n  mathematic s ta t i s t ics  texts, a s  €or example, 
Cramer E881 
they arise,, 

It is more concise than the 

In the sequel, we will carefully define all terms a s  
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where the regression function is related t o  the  observation Y(x) by 

Y(x) = M(x) + n,  (3 . 3) 

where n represents a stationary random process which zero mean 

and finite variance, and where neither the exact nature of H(y Ix) 
nor M(x) need be known C40,411. For the  present, Y(x) , M(x) , 
and x will be taken a s  sca la rs ,  In the s ta t i s t ics  literature, the  

two above problems are called the (1) Robbins-Monro problem, and 

(2) Kiefer-Wolfowitz problem , 

T o  be more explicit , i n  the Robbins -Monro problem , the 

regression function M(x) is assumed t o  be an  unknown monotone 

function of x. 

x = 8 which causes  M(x) t o  take on an  assigned constant value: 

M(x) = C Y ,  where CY is chosen. 

It is desired to  find the particular value of parameter 

In the Kiefer-Wolfowitz problem it is assumed that M(x) has  

a unique maximum (minimum) a t  x = 8 and is strictly increasing 

(decreasing) for x < 8, and strictly decreasing for x > e . 
The procedures used to solve the two problems are concerned 

with making successive experiments a t  parameter levels 

x1 , x2 , . . . . ., i n  such a way that xn tends to  8 in  some probability 

sense.  In order of increasing strength, there  are three types of 

convergence: convergence in  probability , convergence i n  mean- 

square, and convergence with probability one. The latter is a l so  

referred to  a s  convergence almost surely. These will be discussed 

in  the  sequel. 
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While the  restrictions and details  of the  two problems are  

discussed below, it is pertinent here t o  remark that the advantage of 

s tochast ic  approximation over the usual regression approach is that 

neither the conditional distribution function of the  noisy observations 

Y(x), here taken a s  H(y Ix) , nor t h e  underlying regression function 

M(x) need be known, Thus, it is called a non-parametric method. 

Stochastic approximation can be applied to any problem that 

can be formulated as  some form of regression problem i n  which 

repeated observations are made. To be specific,  we will consider 

the problem of estimating the parameters of an  unknown sampled-data 

system when using the  model-matching technique . Reference 

Figure 3.4. The cost  function is the integral of the weighted error- 

squared, and the regression function is the cost  function when the 

noise n (t) is zero. We will use successive observations of the 

cost  function and will adjust the model parameters as  a function of 

the observations by means of a stochastic approximation algorithm 

of the Kiefer-Wolfowitz type. The aim, of course,  will be t o  

minimize the mean-square error between system and model over 

some allowable set of parameters. In general, sequential 

observations of the system behavior (cost function in  our case) are 

used, However, it is a l s o  possible to use the  same system input 

and output t i m e  histories repeatedly, meanwhile adjusting the  model 

parameters by the s tochast ic  approximation algorithm. In addition 

t o  parameter estimation, stocha.stic approximation can be applied 

to  problems of prediction and data filtering C19, 201. In the  

1 
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following short survey, we first discuss  the Robbins-Monro and 

Kiefer-Wolfowitz procedures This is followed by a discussion of 

the  application of the  Kiefer-Wolfowitz procedure to the modeling 

problem. Then the mean-square convergence of a n  extension of the 

Kiefer-Wolfowitz procedure is proved for the estimation configuration 

of Figure 3.4 . 
3 2 Survey Of Stbchastic Approximation Methods 

The following is a concise survey of stochastic approximation 

methods. Earlier surveys were given by Derman C401, Wilde C481, 

Loginov C591, Gardner C791, and Sakrison C191. The latter two, i n  

particular, have a number of engineering applications. The present 

survey includes recent results not included in  the earlier surveys. 

3.2.1 The Robbins -Monro Method 

The Robbins -Monro procedure was the first stochastic 

approximation method C411. Let  (3 *I!), (3.2), (3.3) hold. It is 

desired to find the root x = 9 such that ,  for a given ct 

M(8) = cy (3 0 4) 

The procedure for finding the  root x = 9 is given by the following 

theorem 1 

Theorem (Robbins-Monro C411) : Assume that for each x there 

'Reference Figure 3.1, 
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m X. 
1 

OBSERV ATXON 
NOSE 

M (x.) 
1 

REGRES IO 

I 
I xj 8 i 

R obbins - Monr o Problem : 
Given a and observations {y(x)], solve for x = 8 
such that ECy(x)) = M(8) = a, 

Solution: 
- If conditions of 3 .2 .1  are satisfied x n t l  - x n + aJa-y(x,) 1 

Figure 3 . 1  The Robbins-Monro Problem 
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corresponds a random variable Y=Y(x) with distribution function 

H(y ) = Pr(Y(x) I y); and that there exists a positive constant C 

such that for a l l  x 

C 
Pr(iY(x)I 5 C) (3 0 5) 

I.e., Y(x) is bounded with probability one. Assume that 

exist finite constants Q and b such that 

M(x) 5 Q - 6 for x < e ,  (3.6) 

and 

M(x) 2 Q + 6 for x > 8,  (3.7) 

where 6 >O. 

(Note that M(x) need not equal Q, nor must M(x) be continuous) 

Let {aril be a fixed sequence of positive constants such that 

and 

(3.8b) T a n  = 03. 

n= 1 

(For example a n  = l /n,  n = (1 , 2 ,  . . .)I 
Take x 

Markov chain {xn/ by 

to  be a n  arbitrary constant and define a (nonstationary) 1 
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where yn  is a random variable' with conditional distribution 

function 

Then 

lim E ( X ~  -el2 = o 
n -00 

That is, xn converges t o  6 i n  mean square. This a l so  implies 

convergence in  probability 8891 

Wolfowitz E421 next considered the problem. He showed that 

x in  probability under weaker a n d i t i o n s  on Y(x) 

H e  replaced condition (3.5) with the requirements (on the  measure- 

ment noise (y - M(x))) 

converges t o  0 n 

(3.12) 

He a l s o  required a bound on the  regression function so that M(x) < 00, 

where M(x) is defined by (3.2) Blum E431 then weakened the 

above conditions His requirements are: 

'Using (3.3), we will define yn a s  the  random variable 

Yn = Y(xn) = M(xn) + n (3 3 4  

where xn is the random variable defined by (3.9) 
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A) IM(x)l 5 c + d 1x1 for some constants c and d (3.13) 
such that c I 0 and d L 0. 

00 

B) u = b y  - M(x))' dH(ylx) 5 2 < 00. X 

C) M(x) < .a for 

M(x) > a for 

X <  e, 
X >  e. 

(3.14) 

(3 . 15) 
(3 . 16) 

D) inf JM(x) -01 > O  (3.17) 

b1 5 Jx-el ' b 2  

for every pair of numbers (5  5 ) where 0 < b1 < b < co. l1 2 2 

E) o <  n 
n= 

f a n  = 00. 

n=l  

(3 8a) 

(For example, a n  = A/n where A is a positive constant .) 

Then the Robbins-Monro algorithm (3.9) converges to 8 with 

probability 1 , i .e. , 

(3.18) 

Subsequently, Dvoretzky E471 showed that under Blum's condition 

x a l so  converges i n  the mean-square, i.e, I n 

(3.11) 
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Thus, both Blum and Dvoretzky obtained weaker conditions 

for a stronger form of convergence than Robbins and Monro. The 

Robbins-Monro problem is illustrated in  Figure 3.1 . 
3.2 . 2 The Kiefer-Wolfowitz Method 

By the Robbins Monro method one can  obtain the roots (xi) for 

each  given ' Y ~  of the unknown regression function M(xi) = ai. 

Following this  work, Kiefer and Wolfowitz C441 gave a procedure 

for finding the value of x which maximizes the unknown regression 

function M(x) . The main restriction on M(x) is that it must have 1 

a unique maximum. (By suitable modifications the  following 

theorems can  a l s o  be used to express conditions for convergence 

to  the minimum of the  unknown regression function M(x)). 

Theorem (Kiefer-Wolfowitz C441) : Let M(x) be a n  unknown 

regression which has  its (unique) maximum at the unknown point 

x = 8,  and let H(ylx) be a f ami ly  of conditional distribution 

functions which depend on the  parameter x, i.eo , 

'Reference Figure 3 . 2.  



I REGRESSION.. 
FUNCTION 

X i * MCxi) 

Dvo ret zky' s Inequality 
Constraint: 

lM(xtl)-M(x) 1 <A It B 

X 

Kiefer-Wolfdtz Problem : Given the noisy observations b(x) 1, find 
x = 8 which minimizes  M(x). 

Solution: If the conditions of 3.2.2. are  satisfied, then take 

C n 

Figure 3 , 2  The Kiefer-Wolfawitzl Problem 
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Assume 

(3.21) 

Assume the following regularity condition on M(x) : 

B) (1) There exist positive P and B such that for distinct 

value of x given by x’ and x” 

Ix’ - e l  + Ix” - el< p 

~M(x‘) - M(x”)( < B ~ x ’  - x’’! 

There exist positive p and R such that 

implies 

(3.22) 

(2) 

Ix’ - x ” l <  p implies 

IM(x’) - M ( x ) ~  < R (3.23) 

(3) For every b > 0 there exists a positive R (6) such 

that 

! x -  e l >  b implies 

’ R @ )  . (3 . 24) inf IM(x + E) - M(x - E)] 
€ 6/2 ’ e > 0 

f a n  = a3 
n= 1 

f a n c n  < co 
n= 1 
co 

l i m  c = 0 n n--oo 
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1 - 

(For example: a n  = A/n, cn = C/n3 , where A and C are 

positive constants,  and n = 1, 2 8 . . .. . .) . 
D1 Take 

1 

(3 . 26) 

where YZn+l  and YZn-1 are independent tandom variables with 

respective conditional distribution functions H(ylxn + cn) 

and H(ylxn - cn). That is, using (3.3a), define 

a s  the observation of the random '2n+l 
and define y2n-1 a s  the observation of 

variable Y(xn + cn) , 

the random 

variable Y(xn -cn). ' Then 

i.e., xn converges to 8- i n  probability. 

(3.2 7) 

'See the Appendix for a discussion of these  sequences. 

2Using (3.3a) , we define the observed random variables 

Y(xn + cn) = M(xn + cn) + n 

Y(xn - cn) = M(xn - cn) + n 
and 

(3 . 3c) 
(3.3d) 

Departing slightly from the notation of JSiefer-Wolfowitz, we will 
henceforth denote for conciseness 

Y2n+1 = Y(xn + cn) , 

'2n-1 = Y(xn - c,). 
and 
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The regularity conditions on the regression function M(x) are  

explained a s  follows: B(1) assures  that the  magnitude of the slope 

of M(x) is small near the maximizing point 8; B(2) prevents the 

slope of M(x) being too large for any point x; B(3) assures  the 

slope is not zero whenever x # 0 thus eliminating the  possibility 

of f lat  spots  i n  M(x). 

Blum C491 then eliminated the need for conditions (3.22) and 

(3,25b) in  proving 

P l im x n = e )  = 1, 
{ n - - a  

(3 .28)  

i .e. , convergence of equation (3  . 26) with probability one. However, 

up to this  point important regression functions such a s  M(x) = e 

or M(x) = -x , were ruled out s ince they do not satisfy (3.22) and 

(3 .23)  for x 2 0. Derman L 4 5 1  considered functions whose 

2 -X , 
2 

difference quotients lie between two straight l ines with positive 

slopes. Functions like M(x) = -x , for x L 0 ,  satisfy these  

conditions . He showed convergence of xn t o  0 i n  probability. 

Finally Burkholder L461  and Dvoretzky E471  obtained the weakest 

set of conditions which allow u s  to use s tochast ic  approximation 

for regression functions such a s  M(x) = e Burkholder proved 

2 

2 -X 

probability one convergence and Dvoretzky proved both mean square 

and probability one convergence 

conditions are (assuming, without loss  of generality, that 

and that we use  the  algorithm for x ~ + ~  given by (3.26)): 

In Dvoretzky's form these  

8 = 0 



A) IM(x + 1) - M(x)~<AIxI + B <  co 

8 4  

(3 e 29) 

for all x and suitable A, B 

00 
L 

= ](y - M(x)) 2 dH(ylx) 5 IJ 2 < 00 6) "x 
-00 

D) The sequences of (3,25a), ( 3 , 2 5 c ) ,  (3.25d). 

(3 . 30) 

(3 .31)  

(3.32) 

(In (B) above 5 M(x) and _D M(x) denote the upper and lower 

(Dini) derivatives C581 of M(x) a t  x and are given by 

- D M(x) = 5 (.(x+hL- M(xl) 

o#h- o 

and 

- D M(x) = 

(3  . 33) 

(3  . 34) 

Note that the Kiefer-Wolfowitz procedure (3 .26)  is simply an  

approximate gradient search method. In fact ,  Loginov C591 points 

out that  it is simply a s tochast ic  version of an algorithm originally 

given by Germansky C601. It differs from the  deterministic gradient 

procedures in  that the multiplier a n  is decreased with n rather 

than being held constant or increased. Also, the s i ze  of 6x over 
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which the gradient is calculated decreases with n according to  the 

behavior of c 

shown in  Figure 3 . 2  ., 

The Kiefer-Wolfowitz minimization problem is n' 

Dvoretzky C471 a l so  considered a more general stochastic 

approximation approach, encompa ss ing both the Robbins-Monro 

process,  the Kiefer-Wolfowitz process,  and others. In this  he 

partitioned the stochastic approximation algorithm into a random 

part and a deterministic part, and obtained broad convergence 

requirements on the  two parts. He obtained both probability one 

convergence and mean-square convergence for this  p o c e s s  . 
Multidimensional extensions of t h e  Robbins -Monro and Kiefer- 

Wolfowitz processes were made by Blum C491, However, for the  

latter process he required that M(x) have continuous first and second 

derivatives . Furthermore, Blum's procedure develops a one-sided 

approximation to  the gradient rather than the two-sided approach of 

equation (3.26) Sacks E501 stated a theorem for probability one 

convergence of a multidimensional Kiefer-Wolfowitz procedure e 

Subsequently, Derman and Sacks 1513 proved the probability one 

convergence of the Kiefer-Wolfowitz procedure by providing a 

multidimensional extension and a corresponding probability one 

convergence proof of Dvoretzky's theorem , 

Later, Venter E521 obtained both mean square and probability 

one convergence for a multidimensional Dvoretzky theorem and thus,  

by implication, provided a basis  for t h e  mean-square convergence 

of the multidimensional Kiefer-Wolfowitz process . 
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While the Dvoretzky procedure is elegant,  it beclouds the 

simplicity of the more direct approach of the  Kiefer-Wolfowitz 

procedure. Consequently, i n  subsequent work the Kiefer-Wolfowitz 

approach is used directly. Another reason for doing this is that 

Dvoretzky' s formulation and the  multiple parameter extension thereof 

when used for model matching are  best  suited to the estimation problem 

shown i n  Figure 1.3 when only noise n (t) exists. In problems of 

system modeling, however, the presence of noise n (t) is usually 2 
of small concern while noise n,(t) is very important. Therefore> the 

configuration to be analyzed will treat only the c a s e  where noise nl(t) 

is present. It remains to  be proved that the Kiefer-Wolfowitz 

2 

procedure applied to  th i s  c a s e  a s  well,, 

The question of t h e  s i ze  of the estimation error after k iteration 

s teps  has  been considered by Chung C551, Derman C451, Sacks CSOI, 

and Dupac C561. Chung showed convergence of the parameter 

estimates for the Robbins-Monro procedure to a normal distribution 

with mean zero. Furthermore, he gave expressions for t he  upper 

bound on the absolute moments of xn 

(3 c 35) 

for a l l  L. 
2 bound ((T. ) 

However, h i s  expressions can be evaluated only when the 

on the noise variance 

(3.36) 

is known. 
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Derman f571 obtained similar results for the  Kiefer-Wolfowitz 

procedure. 

The question of a n  optimal sequence an  or an/cn to minimize 
2 t h e  variance E(xn - 9) 

either the R-M procedure or the  K-W procedure is of interest  . 
Dvoretzky E471 solved th i s  problem for the R-M procedure. 

Dupac C561 solved it for the K-W procedure. In both cases  their 

work is for the scalar  formulation. Sakrison E651  extended Dupac's 

analysis  to the multidimensional K-W procedure. 

after any fixed number of iteration s teps  of 

For the scalar  Robbins-Monro procedure Dvoretzky assumed 

B) There exist constants A and B such that 

(3.37) 

C) It is assumed that  a constant c L 0 exists such that 

\Xn - $15 c . 

Then the  sequence 

(3 . 39) 

2 A c  
2 a =  

n u 2 + n ~  
(3.40) 
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is optimal for the Robbins-Monro procddure and the  variance of the 

estimates is bounded with the bound given by 

(3.41) 

The theorem of Dupac E561 which we will use a s  a reference 

bas is  i n  proving convergence of the K-W stochastic approximation 

procedure for the  system modeling configuration is stated a s  follows: 

Assume 

A) M(x) is increasing for x < 0 ,  and is decreasing for x> 0 ,  

where 

B) For every x 

-00 

C) There exist constants K > 0 ,  K1 > 0 ,  such that 0 

Let an,  cn be positive sequences of constants such. that  

(3 . 42) 

(3 . 43) 

(3 . 44) 

00 00 m a  2 
l i m  c n =o, pn=oo, x a n c n <  a, I(<) < a. (3.25) 

n= 1 n= 1 n= 1 n--a, 
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Take 

- X n+l - - xn + an(Y2n-;n (3.26) 

are independently distributed random 2n+l and Y 2n-1 where y 

variables with conditional distribution functions H(ylxn + cn) and 

H(ylxn - cJ,? Then x converges to e i n  mean square. Furthermore I 

for sequences of the type 
n 

, the choice CY = 1 I y = 1/6 insures that -% where CY = 1 implies A > 

Any other choice of CY and Y leads to  a worse result. If I i n  addition I 

it is assumed that 

for 

insures that 

i n  s o m e  neighborhood of 8 ,  then the choice CY = 1, Y = 1/6 

- .  

'See (3 e 3e) - (3  30 for explicit expressions for y2n+l and y2n-l. 
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(3.48) 

and th is  choice is optimal in  the same sense.  

Sakrison C651 a lso  obtained the same results for the multi- 

dimensional Kiefer-Wolfowitz procedure . Refer to  the Appendix for 

a discussion for the properties of a n  and cn. 

3 . 3  Stochastic Approximation Applied to the System Modelinq Problem 

Stochastic approximation has  been applied to the system 

modeling problem by Sakrison C18, 1 9 ,  651, Kirvaitis E243, 

Holmes E251 and others. Sakrison extended Dupac's work on 

optimal sequences an and cn to the multiparameter case 'and  

treated such regression functions a s  error squared, magnitude error, 

and error t o  fourth power. He studied estimation of parameters of 

nonlinear systems and gave an example of the design of a linear 

prediction filter where the gain multipliers of k linearly independent 

s table ,  linear transfer functions were chosen by stochastic 

approximation. Sakrison' s problem is illustrated by Figure 3 . 3  . 
Kirvaitis estimated the parameters of both linear and nonlinear 

differential equations ., Both Sakrison and Kirvaitis required that 

the noise components have bounded variance and a l s o  that they be 

bounded i n  magniture. Also, they required that the  system parameters 

be confined to  a compact convex set . 
Holmes represented the unknown nonlinear system a s  an 

analytic function expanded in  a Volterra ser ies  i n  the parameter Y 
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which he then estimated by stochastic approximation. He furnished 

estimates of both a linear kernel function and a nonlinear kernel 

function of a nonlinear stationary discrete-time control system . 
He required that all noise sequences have bounded variances and 

that t h e  system parameters belong to a bounded convex set 

3 . 4 Stochastic Approximation Applied T o  Estimation Of Parameters Of 

Nonlinear Sampled-Data Systems With Noisy Observations 

3.4.1 Introduction 

Again consider the problem of Section 1.4. This problem is t o  

estimate all the parameters of a sampled-data system including the 

sampling interval . The sampled-data system consists of 'a sampler, 

a zero-order data hold, and continuous dynamics . The sampled-data 

system, and corresponding sampled-data model are  illustrated in  

Figure 3 . 4 .  N o t e  that  while the input t o  the  sampled-data system 

and sampled-data model is scalar ,  the observed signal is taken as 

the  noise-corrupted s ta te  vector. Later, in the simulation work, the 

observations will  be limited to  the scalar output of the sampled data 

system. T h i s  will be done because i n  a number of practically 

important problems the observations a re  limited to the scalar  output . 
The same limitation is necessary for simulations in  order that they 

yield a bas is  for later modeling work with real  data. 

In the following development no typographical distinction will 

be made between vectors and scalars ,  although scalar  components 

of a vector will be indicated by superscripts . For example, 
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STOCHASTIC APPROXIMATION 
PARAMETER ADJUSTMENT ALGORITHM: I 

I O . .  . o  

e -1’. . . . , em] = 1 :I 
. .  
0 0 . .  . t 

IIm a = 0 , lim c = O  
n--- n-o 

n 

I j = ( I .  .... 2 m )  

Figure 3 e 4 General Parameter  Estimation Configuration Using 
Stochastic A pp I oximation 
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1 2  n /  z = ( z  

its components z . The symbol (’) indicates the transpose of a 

vector. The vectors belong t o  Euclidean vector spaces  and the 

z , . . .. 
i 

z ) denotes the relations between a vector z and 

Euclidean norm 

(3 . 49) 

will be used for norms of vectors. The norm for n x n matrices A 

is defined by 

., 

(3 . 50) 

i ,  j=l 

A l l  stat is t ical  averages E( ) are ensemble averages unless otherwise 

noted. The subscript k denotes the  kth iteration so that 

z t j i n d i c a t e s  the  vector z and its components 1 2  Z k = { z k  I Zk 1 . e .  0 ,  

a t  the kth iteration. We will a l so  use  the  symbol 0 t o  denote 

both the scalar  zero and the vector zero. 

Referring to  Figure 3 . 4 ,  the continuous dynamic system is 

assumed t o  be given by 

where the  s t a t e  vector z and the  dynamic system vector function f 

are  both n vectors p is an h vector of constant parameters, 
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1 and u(t) is an  r vector of controls. (In this  ca se  r = 1). 

Corresponding to  the  continuous dynamic system there is a 

continuous dynamic model 

(3 . 52) 

which has  vectors of  the  same dimensions a s  the  continuous system. 

We assume the form of the system and model t o  be the same. 

Hereafter, (3.51) will be called the continuous system t o  distinguish 

it from the sampled-data system. Likewise, (3.52) will be called 

the  continuous model to distinguish it from t h e  samded-data model. 

Define the constant parameter vector of the sampled-data system 

by the m dimensional vector 

This vector is not, i n  general, completely known. In fact ,  it may 

be completely unknown 

Define the parameter vector of t h e  sampled data model by the 

m dimensional vector 

'Throughout, we will u se  the convention, established i n  
Chapter 1 , and used in  Chapter 2 , of indicating the solution of (3 . 51) 
by either z(t; p ,  5 ,  r(t)), z(t; p, <), or z(t) depending on whether 
we suppress the dependence on parameters, initid conditions, and 
control function. The same comment a l so  applies t o  the solution of 
(3 . 52) . 
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This vector is adjustable.  A s  i n  Chapter 2 , m = (h+l+n) 5 2n+l . 
It will be held constant over an  iteration interval of length T 

where r >> T 

where n indicates the iteration number (n = 0 ,  1, 2, . . . . . .) 
Indicate by Sn the nth iteration of the parameter vector of the 

sampled-data model . Explicitly , th i s  is 

ZI 

This interval will a l so  be indicated by [t,, tn + TI, n o  

At the end of an  iteration interval, the stochastic approximation 

algorithm, to be discussed,  will be used to  increment the  components 

of 2 The new parameter vector is indicated by 2,+l. n o  

Define the observation of the  sampled-data system by the  n 

dime nsiona 1 vector 

where n (t) is an  n dimensional vector\of observation noise with 

properties to  be discussed subsequently. Note  that v(t; x, r(t)) is 

a random vector. Define 

1 

a s  the error between observed sampled-data system and sampled-data 

model. This is a n  n dimensional random vector, Note that when 

the  system is not completely observable, then some components of 

v( ) will be zero. In this case, corresponding components of 2( ) 

and e (  0 ) would a l so  be set t o  zero. In effect, the dimension of 
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the vectors defined by (3.56) and (3.57) would be accordingly 

reduced. This would be done by indicating explicitly the observable 

components of the s ta te  and error vectors. 

Define the cost function by the integral norm-squared error 

function 

J(tn+Wn,x,%r(t)) = E (t;x ,^x, r(t)))' W (t;x ,2,r(t)))dt (3 . 58) 

where W is a diagonal weighting matrix with positive terms, and is 

hence positive definite, Note  that J( ) is a scalar random variable. 

A s  before, T is the (constant) iteration interval. 

The Keifer-Wolfowitz stochastic approximation procedure for 

obtaining estimates Pn of the sampled-data system parameter vector 

x willnowbe described. We choose the  sequences of positive num- 
1 bers {aril and {cn\ which have the properties 

'We can show that the  sequences a n  and cn with properties 
described by (3.59) and (3.60) a l so  satisfy the original K-W conditions 
(3.25). We have only to show that 

But from the analysis given i n  the  Appendix we can  write 

co 
ancn < 00 and that T a n = m .  

IF1 IF1 

and n=l n=l 

= TA/n = C O  

n= 1 n= 1 
Hence (3 59) and (3.60) imply '(3.25) . 
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l i m  a = 0 ,  l im  cn = o  n n-oo n--oo 

(3 . 59) 

Specifically, we will follow the work of Dupac IC561 and Sakrison C651 

i n  choosing 

a = A/n, and c = C / n  1/6 (3 ., 60) n n 

for optimal convergence properties of t he  Kiefer-Wolfowitz algorithm. 

In (3.60) A and C are positive constants,  and n E [l , 2 

is the iteration number. 

. . . . . . . .) 

Define by e the mxm matrix of m dimensional natural bas i s  

vectors 

(3.61) 

Define the 2m perturbations of the  m dimensional model 

parameter vector by 

(3 . 62) a. i Bn(+i) = x n + e  cn ( i =  1, 2, m) 

and 

(3.63) h i xn(-i) = P - e cn (i = 1, 2, o . o . l  m) n 
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Note that only one scalar component of gn is perturbed for each value 

of the index i. 

We now use  (3.58) and define the scalar random variables 

resulting from employing the perturbed parameter vectors (3,621 and 

(3.63). These are the 2m scalar cost functions, which we define by 

tn+2T 

(3 . 65) 1 I I  E (t; x, (cn -e 1 cn) , r(t)) II 2 dt ,  
Y2n-1 = in+T 

. . 

. . 

. . 
I I  E (t; x ,  (2n + eicn), r(t)) II 2 dt,  i 

Y2n+1 

tn+2iT 
= )I E (t; x, (5, - e i cn) , r(t)) I I  2 d t ,  i 

Y2n-1 
t n+( 2i- i) T 

( i = 2 ,  3 ,  ...., m) 

(3 . 66) 

(3 67) 

where the integrands are quadratic forms with the weighting matrix W. 

are No te ,  by referring to Figure 304, that the y2n+l and y 

observed random variables. Also note that one complete set of 

iterations is obtained in  2mT seconds . Successive t i m e  histories 

i 
2n-1 
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i of z(t; x, r(t)) and 2(t;(^xn f e cn, r(t)) , (i = 1, 2 , . . . , m) are  used 

i n  the  above procedure; hence, it is suited to real  t ime estimation 

problems. However, it is a l so  possible to  use  the same t i m e  

history of z(t; x, r(t)) repeatedly , while generating the  successive 
i model state vectors ^z(t; (?n f e cn) , r(t)) , (i = 1 , 2 , .. . , m) . 

Naturally, in  the latter case, we would use  the input r(t) corresponding 

to the particular z(t; x, r(t)) which we are  using, The convergence 

theorem, t o  be discussed,  will work for either procedure. 

Using the  set of 2m scalar  cost functions given by (3 .64) -  

(3.67), construct t he  m dimensional random vector defined by 

Notice that each component of this  vector is a n  observed random 

process . 
Now define the  stochastic approximation algorithm which will 

be used for successive estimates Zn of the m dimensional 

parameter vector x of the sampled-data system. These estimates 

are  defined by 
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where ?l is a chosen m dimensional vector having finite components. 

Notice that  a l l  iterations of (3.69) yield random vectors fin+l 

s ince (3.68) is a random vector. 

form a s  the well-established Kiefer-Wolfowitz algorithm, (3.26), it 

will subsequently be referred to  as such, We will subsequently 

Since th i s  algorithm has the same 

state and prove a theorem for mean square convergence of fin t o  x; 

written a s  

l i m  E [I?. - xl12] = o 
n--rn 

(3.70) 

A t  th is  point, it is interesting to  compare (3.69) to  the 

algorithm for the usual steep descent gradient search, given by 

(2.30). Clearly, t he  positive number a n  corresponds to the 

positive gain Kn, and the random vector (y2n-.l - Y2n+l)/Cn can 

be regarded a s  an  approximation of the gradient vector 

V%[J(T; x ,  2, r(t))J . 
An assumption of a unique minimum of J( ) I given by (3 . 58), 

is required in  order t o  prove convergence of the  K-W procedure 

(3.69) t o  the vector fin = x, where x is the parameter vector of 

the sampled-data system, and gn is the  nth iteration of the parameter 

vector 2 of the sampled-data model. In practice, a quick scan  of 

2 over the space of possible parameter vectors may give some idea 

of local minima of (3.58) . Then the K-W stochastic approximation 

procedure of (3.69) can be employed, 
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From (3.69), and recalling (3.62) to (3.67), it is now clear 

that  (yZnml - y2n+1)/~n is a random vector conditioned on the 

h sequence of random vectors (%,, 2n-l, . . . . , x1 1 . For conciseness,  

we will usually indicate this  sequence by {5tn\ . Thus, we will  

describe yZnml and y2n+l a s  statist ically independent random 

vectors with respebtive conditional distribution functions 

H(y{^xn - cn) and H ( Y \ % ~  -f cn) . 
Now, using (3.64) to ( 3 . 6 7 ) ,  we define the vector-valued 

deterministic regression functions underlying the random vectors 

y2n-l and y2n+l by the m dimensional vectors 

and 

Assuming that the  noise vector n,(t) is a stationary finite 

variance random process 

E [.il(t)] = 0, 

and that the noise is not 

^z(t; 2, r(t)), so that 

I 

with components having zero mean, i .-e., 

( i=  1, ...., n) (3 . 73) 

correlated with either z(t; x, r(t)) or 

for t1 and t2 belonging to  [t,, tn + 2 i ~ ] ,  (i = 1, 2 ,  . . . . . . , m) , 

and t LO, 00 1 ,  then it will later be shown that n 



103 
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(3 . 75) 

on the  sequence f n  is 2n+1 where the  dependence of yZn - 
clear from (3.64) to (3.67) . Thus, our definition of M2n+l and 

a s  regression functions sat isf ies  the usual statist ical  M2n-1 
definition that the regression function is the conditional expectation 

and y 

of ~ 2 n + l  and ~ 2 n - 1  for the  given 'in C881. 

Another requirement that  we will place on the noise vector nl(t) 

is motivated from consideration of (3.56) and (3.69). Notice that 

the parameter estimates %n are  generated a s  functions of the noisy 

observations v(t; x, r(t)) of the  sampled data system. Recall that  the 

proof of the  existence theorem for differential equations, s ta ted i n  

Chapter 2 ,  required that t he  parameters lie in  closed balls . One 

way of conforming with this  requirement, is to require (1) that the 

components of the first estimated of these parameters, given by 2 

must lie in  a closed ball ,  and (2) that  components of subsequent 

estimates f must a l so  lie i n  a closed ball. From a consideration of 

(3 . 58) and (3.69), it is clear that  in  order to satisy the  latter require- 

ment, we should place a magnitude bound on the components of the 

observation noise vector 1241. This will then assure  that t he  compo- 

nents of the resulting parameter estimate vector 

from (3.69), will be bounded. This restriction is expressed by 

requiring that a constant C < ob must exist such tha t  

1' 

n 

a s  obtained 
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Requirement (3 . 76) , together with (1) above, insures that 

the  components of a l l  parameter vector estimates 2 

within a closed ball. Closed balls are convex C671, are bounded 

and hence the set of points within the  closed ball  is compact C331. 

Equivalently, by requiring that the components of 2 

convex compact set , together with (3 . 76) , would insure the above 

boundedness of t h e  components of 

3 . 4.2 Nlathematical Basis And Mean Square Converqence Proof 

will lie n 

lie in  a 1 

The purpose of this  section is t o  prove man-square  convergence 

of (3.59) t o  the parameter vector x, 

parameter vector given by (3.53). In the  sequel ,  th i s  fixed vector x 

will be denoted by 0. We will first s ta te  several  supporting 

theorems from differential equations,  so a s  t o  provide a n  analytical  

bas i s  for the convergence proof . 

where x is the system 

Reference has already been made t o  the-work of Dupac C561 

in  proving mean-square convergence of the  scalar  parameter 

K-W procedure. Sakrison E651 and Kirvaitis C241 followed 

with similar proofs for the vector parameter case .  However, 

Kirvaitis imposed a number of restrictions on the vector 

- 
E ( ( ~ ~ n - l  YZn+l n 
result  , more fundamentally, by placing differentiability 

restrictions on the  continuous model ?( ) and of course on 

f (  ) a lso  Thus, i n  general t he  approach taken here is to  

) I ?  ) . In th i s  work we achieve the same 

treat  the entire estimation configuration of Figure 3.4 
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and i n  so doing place restrictions on f (  ) and f (  ) which then 

guarantee the desired behavior of E ( ( Y ~ ~  - y2n+l) I 2n) . - 
3 . 4 a 2 . 1 Theorems From Differentia 1 Equations 

The following existence and uniqueness theorem for ordinary 

differential equations with controls is well-known t 3 3 1 .  We here 

paraphrase it in  terms of the  differential equations of the continuous 

model since ultimately we will want sufficient conditions under 

which the first partial derivatives with respect to parameters of the 

solution of th i s  differential equation are  continuous and bounded 

functions on a compact set. Real variables are assumed throughout. 

Reference Figure 3 . 4 ,  

Theorem 3 1 r33].  Let functions f1 given by 
A. 

“i A 

- =  d2’ 
dt f i(2,  “ut) , t); ..i 2 (t=O) = 5 (3  52) 

( i = l f  2 ,  . . . I  n) 

2 
together with the partial derivatives Elf /agg (i ,g = 1 , 2 , . e e , n) 

exist and be continuous functions from the cross  product of open 
n+r+l (given by En x 3 x (T1, TZ)) into E 1 . Let sets i n  E 

be a vector of piecewise continuous functions from (t 

where the  vector of values of u(t) will be denoted by (u , u , . . . , u  ) . 
t ) into Ur, 
1 2  r /  

1’ 2 

A 

Then there exists a function $ from a n  interval I t l ,  t2) C (T1, T2) 

containing t into 2” with components $ (i = 1, 2 ,  , n) 

such that y is a continuous function on (tl tz) , $(t=O) = c ,  
and $ 

A A i 
A n 0 

^i is a solution of 
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n. 

(i = 1, 2 ,  ..., n) (3.77) 

for a l l  but a countable set of points i n  (t 1, t2) . Furthermore, the 

solution V is unique for the  given f and G(t) data. 

-- Remark 1: While the above sets i n  

requires that ( z ,  u, t) lie in corresponding compact convex 

(closed spheres) subsets  of the open sets Zn, Ur, and (Tl,  T2) 

respectively. 

n 

are  open, the proof 

h 

We next consider the case where f containsan h dimensional 

constant parameter vector 5. For reasons mentioned above, we 

desire that the solutions qi (i = 1, 2 ,  . . . , n) , which wi l l  later be 

written informally a s  “z, be differentiable with respect to each 

5’ ( j  = 1, 2 ,  . . . , h) , and that these derivatives exist and be 

continuous functions on open sets (and hence bounded on a compact 

subset C671). A theorem for this case is a l so  well known C32, 801 

and is here paraphrased i n  terms of the variables of the continuous 

mode 1. 
* 

- Theorem - 3.2 C32,801: Let the functions f i, given by 

A. h 

- =  d^zi f’(2, ^p, t) ,  ..i z (t=O) = c i ,  ( i=  1, 2 ,  ...,n),(3.78) dt 
CI. n. 

together with the partial derivatives 8f’/8Zg and af’/8?’ 

(i,g = 1, 2 ,  .. . , n),  (j = 1, 2 ,  . ., h) exist and be continuous 

functions from a cross-product of open sets i n  E (given by n+h+ 1 
h ^h A 

Zn x P x (T1, T2J) into an open set R in  E’, and let f satisfy 
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^h 15 

a Lipschitz condition i n  2 uniformly on Zn x P 

Then there exists a solution 5 from a n  interval (tl, t2) c (T1, T2) 

containing to into zn with components (+', ICI 8 , . . 8 

x (T1, T2) . 
n 

A "2 A 

such 
^i that  the + 

2, p̂, and t , the  a$/a^pj and a$ /Eg  exist and are  jointly continuous 

i n  t ,  z ,  and 3 ,  and the Ti are solutions of 

(i = 1, 2, .. ., n) are  jointly continuous functions of 
*i A .  

A 

(3 . 79) 

CI n 

for a l l  but a countable set of points t i n  (t 

Furthermore, the solutions 4Ji a re  unique for the given 6 and p data.  

t ) , and q(t=O) = 5 . 
n n 

1' 2 
A 

h 

Remark 1: The existence and continuity of the afl/a^zg on a compact 
7-l n 

subset of Zn x P x (T1, T ) is a stronger sufficient condition 2 
15 

than the Lipschitz condition for the uniqueness of the  solution $1; 

see Theorem 3.1 , Remark 1 . Hence the requirement of the  Lipschitz 

condition can here be omitted. In fact ,  the existence and continuity 

of the  afl/a"zg (on a compact subset  of ^zn x P x (T1 TZ)) imply 

the above Lipschitz condition C731. Note that the existence and 

continuity of af1/32g implies the existence and continuity of 

^h n. 

8 

h 

a f / ac  "i Ag c801, 

Remark 2: Consider the system 

n 

- =  ?(z, 3 ,  ̂ u(t), t); "z(t=O) = 5 ,  (i = 1, 2, ...,n) (3.8'0) dt  

exist and be  continuous functions from the  cross-product of open 
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set i n  En+h+r+l (given by ẑn x :h x Gr x (Tl, T J )  into a n  open 
n 1 “ n  

set R i n  E . 
to 3, and let c(t) be a piecewise continuous function from 

Let  2 belong to  Z , to belong t o  (T1, T2),  p belong 

a. 

(tl, t2) c ( T ~ ,  T ~ )  into U‘ ( i -e . ,  let G(t) t ake  its vector of values - -1 -2 -r ’ 
(u , u , . . 
and Theorem 3.2 (with Remark 1) are satisfied and there exists a 

solution Y from a n  interval ( t l ,  t2) C (T1, T 2 ) containing to into 

u ) i n  Ur) . Then, the hypotheses of Theorem 3.1 

n 

~ 

n “ ^1 ^2 
A 

Zn with components ($ , $ , . . . , +n) such that the  Jli, 

a$ / p I and a@/aZg are continuous functions of (2, 5, $, t) , 
A n 
i 8-j 

h 

and the  qi (i = 1, 2 ,  . ,,. , n) are  solutions of 

n 

on all but a countable set of points t in  (tl,  t2) ,  

Furthermore, the solutions @are unique for the given 5, p,  and 

and $(t=O) = 5. 
n. h n  

“ut) data As i n  Remark 1, the existence and continuity of 

-* ^g 
n. 

afl/a^zg imply the  existence and continuity of afl/af . 
n 

We next incorporate f (  ) and f (  ) i n  the feedback 

configuration of the parameter estimation scheme of Figure 3.4. 

Recall that the parameter vector of the sampled-data model is 

given by 2 = (3 ,  T ,  51, and the vector (y2n-l - y2n+l ) is defined 

by (3 -68). The boundedness of the vector of partial derivatives 

A A /  

- 8E. ((yZnml - y2n+l)Isn) is an  important requirement for our 
a2 
subsequent mean-square convergence proof of the K-IV\/ parameter 

estimation algorithm for the  model-matching configuration of 

Figure 3.4 . The following theorem s ta tes  sufficient conditions 
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such that  the components of the vectors of partials 

The boundedness of the remaining partial derivative, 

- a ~ ( f y 2 - 1  - ~ 2 n + l ) l  n ^x ) will1 be di,scussed in  the sequel. 
a? 
Theorem 3.3: Let  t h e  assumption on noise nl(t) given by (3.73) 

and (3.74) hold. Let the continuous system and continuous model 

of the model-matching.parameter estimation scheme of Figure 3 . 4  

be of identical  form, and let the continuous model be given by 

n d$ A 

dt -- - f(z", s, u"(t), t) ,  z^(t=O) = 6 ,  (i = 1, 2 ,  ..I n) (3.82) 

A 

where a l l  notation is a s  in  Theorems 3 ,, 1.and 3 . 2. Let the f , 

af'/a"zg, and af'/a$ (i ,g  = 1, 2 ,  . o, n) , ( j  = 1, 2 ,  . . . , h) 
A. A. 

exist and be continuous functions from the cross product of open 
*n "h A r  sets i n  En+h+r+l given by Z X P x U x (T1, T2) into an open 

set R of El, where 
n 

belongs to  Zn, h belongs to  Fh, and 3(t) 

is a vector of piecewise continuous functions taking its vector of 

values 2 i n  Ur. Specifically, let u"(t), as obtained from the 
n 

zero-order data hold of the sampled-data model of Figure 3.4 ,  be 

given by 

h n -1 Q(t) = r(k2T) - z (k2T) 

k2T 5 t < (k2 +1) T 
n 

where t: 

(3 83) 

and where 2' is the output components of the s ta te  vector of the 

sampled-data model 2 a s  defined below. Then the vector (3 . 75) 
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(3 0 75) 

is differentiable with respect to the model  parameter vector p" 

and the initial condition vector 5 ,  and the components of the 

vector derivative are continuous in  (2, p", u", t) and are  bounded 

when (2, p", h, t) belongs to a compact subset of 

* 

"h "1 n+h+2 "zn X P  x u x ( T ~ ,  T ~ )  i n  E a 

- Proof: 

Remarks 1, 2 .  Hence the solution 4 is unique, and the @ ,  

E$/@, and aCi/8$ (i, g = 1, 2 ,  . . . , n), ( j  = 1, 2 ,  . . . , h) 

The hypothesis is the same as  that of Theorem 3.2 with 
L* CI 

h 

LI. n 

are continuous functions of (2, p", u", t) and the 8f1/85g 
cs 

are  continuous functions of ( 5 ,  pA, 3, t) . In particular, 

( 5 ,  i s ,  D, t) is constrained to  a compact subset of 
n 

if 

h 1 Zn x P x U x (TI, T2) then the continuous mappings 
~ - &/zg and i3?//ap"j are  compact , and hence are  bounded E671 

Hence, from (3.68) and (3 . 75) , introducing appropriate 
h 

notation and subscr ip  s , representing yl by 2 for notational 

convenience, and writinq 8 = (8.  &).-, we can express the (h+n)m 
cs 

dimen si ona 1 gradient vector 
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= -2.  

/ 

1 f i i i z n - e  'cn) ,r(t)) W [z(t ;x, r(t)) -z(t; (2n-e 1 cn, r(t)) dt 

0 

n . . . 

+2 

where 8/85 is regarded as an  (h+n) dimensional column vector. 

1 t + T  n 

8Z'(t;(2 +elcn) ,r(t))W -%6;4,+e1cJ ,r(t)) dt 
n 1 

0 

n 0 . 

Because each component of th i s  gradient vector is the definite 

integral (of a bounded function defined on a compact set) it is hence 

a continuous function defined on the  above compact set . Hence 

it is also bounded C671. 
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Remark 1: Since the components of (3.84) are bounded then 

conditions on the noise n (t)) . Then there exist constants 

0 I KO I K1 < co such that 
1 

where e is the true vector of pa ramte r s  of the sampled-data system 

a s  given by (3.53) and 5, = (3n, < J .  
A 0  

Remark 2: By the  above treatment, we have established the 

boundedness of components of the  vectors & ((y 2n-1 - '2n+l )I Zn) 
a: 

CI and a ((y2n-1 - y2n+l)/ xn) . The remaining vector of 
a t  

treatment for this  vector is slightly more involved. The mos t  

convenient approach is to use  (3.58) and determine whether 
A 3 ( t n  + T; t n J  x, xn, r(t)) is bounded for values of Tn selected 

aT 
from the possible range of sampling intervals. We can use  the 

approximation for the  partial derivative given by (2.26). Hence 

using (3 58), and for notational simplicity suppressing a l l  but the 

significant parameters, an  approximation to the  partial derivative is 

a ~ ~ ( g ~ ) )  E [ J c ~ ~ ,  pn +A?) - ~ ( 2 , ~  921 
Y A (3.86) 

AT - a? 

Using the above assumption on the  noise n,(t) and (3.86) the  

approximation t o  the vector is obtained by differentiating (3 . 75) 



to obtain 

- 'E ((YZn-1 - ~ Z n + l )  
a? 

An approximation to  the  s ta t is t  

can be computed by t i m e  averaging by using (3-58) a s  follows: 

j = (2, 3 ,  ..., (m-1)) 
(3.88) 

where E( ) is here d d a s  the t ime average. 

In the sequel, we will proceed o the basis of t h  

every componmt of the right side of (3,88) is bounded for each 

ssumption that 

wed to vary over the range 
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bounds on a 1  of the components of ((y2n - - ~Zn+l)"n)* 
a2 

Thus by referencing (3.8 5) , we can write 

Kg I t  ?n - 6 II 5 I I E  ((yZnml - Y2n+1 )I2 n 11 s K l  Ilgn - 811 (3.89) 
a? 

3.4.2.2 Conversence Proof of K-W Procedure For Parameter 

E s t  imation By Model - Matching 

The following summarizes the above assumptions and presents 

the proof of mean-square convergence of the K-W procedure (3.69) 

for the modeling configuration of Figure 3.4. 

Theorem 3.4: Let  there exist a parameter vector 6 for which a unique 

minimum of the cost function of (3.58) exists (when nl(t) is zero). 

Let  f (  ) and f(  ) be of identical form and satisfy the hypotheses of 
.4 

Theorems 3.1, 3.2, and 3.3 E and the assumption in  connection with 

(3.881, a s  well a s  the following hypothesis: 

A) Assume that the observation noise nl(t) is stationary 

and has  the properties 

(3 * 73) 

(3.90) 

where uij = E(nl(tl)ni(tZ)), i ( i , j  = 1 ,  2 ,  . .. , n). 
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4) IIE(nl(tl)z'(t2:x)II = llE(nl(tl)?iqt2;?t)- = 0 (3 74) 

B) Use  the Kiefer-Wolfowitz procedure 

t o  estimate the true parameter vector e = x of the 

sampled-data system, and a s sume  that 2 and 6 belong 

to a compact set in  Em, where m 5 (2n+l) , and where 

x and 2 are given by (3,53) and (3.54) respectively. 

Assume that the sequences { a n \  and { cn 1 will have the  C) 

properties 

l im cn = l i m  a = 0 ,  
n--co n--oo 3) n 

Specifically, { an1 and {cn\ will be given by (3.60) . 
D) Assume that the components of the  random vectors 

are given by (3.64) to  (3.67) and YZn-1 and Y2n+l 
i 2n+l (i = 1, 2 ,  . . . I m) are that these y2n-l and y 

stat i s t ica 11y independent with probability distribution 
functions H(yl^Xn - eicn) and H(yl?n + e i cn) , 

(i = 1, 2 ,  . . . , m) respectively. 

i '  

E) Assume 

(3.91) 
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where zl is chosen a s  the first approximation to 

x = e .  

Then the  K-W procedure of (3.69) converges to 8 

i n  mean-square . Moreover, the estimate is asympototically 

unbiased, i.e. , l im E(2n) = 8, 
n+a, 

- Proof: Using (3.69) , take the  inner product of the error i n  parameter 

estimation - 0) with itself . 
2 II 2 - e i i 2  = I I  ;in -811 n+l 

(3 . 92) 

Reca lling that y2 nf 

} which on t h e  random parameter sequence ( -n*  x Xn+ ...* x1 I 

will here be written as either (an}or zn, we can  write the 

expectation 169 3 of the left s ide of (3.92) a s  

is a vector of random variables conditioned 
n 

(3 . 93) 
N e x t ,  take the conditional expectation of (3.92) 

E II x ~ + ~  - e11 'xn [ -  2 A  1 
a 2 n 

* 'n 
= I I 2n - 8 11 +2 (En -e 1 -E ((Y 2 - 1 -Y 2 n+ 1) I 4Xn) ) 

(3.94) +k)2 EFly  2 n - 1 -'2 n+ 1 
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To  treat t he  right side of (3.94), note that for the second term 

From (3.64) to (3.67) the  components of (3.95) are: 

(3.97) 

Using Assumption (A) and (3.96) and (3.97), (3.95) reduces to 

are defined by (3 . 71) and (3 72) ,, where MZnml and M2n+l 

From (3.58) , we see that  the integrand of J( ) is a quadratic form, 

thus J( 

if ?n # 0 ,  the inner product of vectors 

) is at least locally convex i n  % for 2 near 0 . Hence, 

(3 . 99) 
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Consequently, for some constant KO > 0 and gn # 8 

(3.100) ((an - e )  , E ( ( Y ~ ~ - ~  - Y z n + J p n ) )  < -Koll?n - 811 2 . 

The third term of (3.94) is treated by noting that  the definition 

of the  conditional covariance [691 of a random vector y , 
conditioned on a parameter vector x, is given by 

(3.101) 

The trace of (3.102) is 

Hence, for y an  m vector, (3.103) reduces to 

m 

i= 1 
E[llyl121x] = 11E(yIx)l12 + 2 i  (Y 1x1 

(3 . 102) 

(3 . 103) 

(3 104) 

2 i  i where u (y Ix) is the  scalar  variance of the random variable y 

conditioned on t h e  vector x. Applying this  result to the third term 

of (3.94) 



Using (3.98), (3.105) reduces to  
> 

where u2 [ a ]  represents the variance of [.I. 
From assumption (A2), the terms of the noise covariance matrix 

a re  bounded. Hence, the t e rms  of the covariance of t h e  mappings 

of the noise (3.66) and (3.67) a re  a l s o  bounded. Consequently, 

where the constants 0 c ki < 00, (i = 1, 2 , . . , m) 

From Theorem 3 .3 ,  M2n*l is differentiable, hence we can 

approximate M2 - 
series expansion about kn 

and MZncl by the first terms of a Taylor’s 

aM M2n-1 - M(“x) - aj; (2J d c n  (3 108a) 

(3.108b) 
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where (dc,) is an  m dimensional vector (cn, cn, .. . ,8 c& and 

where by using (3.68), we define 

WjiJ = E 62n*l(cn = 0)- (3.109) 

Recalling (3.89) and using (3 * 108a) and (3.108b) 

Using (3 . 100) I (3 106) I (3.107) and (3.110) i n  (3 .94)land taking 

expectations of both s ides  

(3.111) 

E K: I I G ~  - ell2 + r2] 

By using (3.93), (3.111) reduces t o  

From (3,89) we are  free to take  KO = K1 so that  

-01l2] 5E[ll^xn-8112][1 - K  J] a 2  +(L)2  u 2  (3.113) 

l C n  'n 

Define E il"x, - & 1 1 2  = bn, and iterate (3.113) to obtain 
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where (n = 1, 2 ,  ..., 1. 
It is shown in the Appendix that 

(3.114) 

l i m  (')' = 0,  
n-. 

and 

Hence, there is a (finite) no such that 

( l - K  l C n  5 7 5  (l-XL) cn 

for n ?no. ' 

Rewriting (3.114) in  view of (3 . 117) 

n -1 n -1 a 

i= 1 t[$)'fi k=i+l (l-al>" j=no fi ( l - < K T  

(3.115) 

(3.116) 

(3.117) 
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This can  a l s o  be written 

where, from Assumptions (C) and (E) , 

2 n -1 
bn A bl fi (1 - :K$ 5 K3 < ca 

0 
i= 1 

(3.120) 

and where (since no is fixed and 0 5 n < 00, and using Assumption 

C( 1 , 2) and the fact that K1 < 00) we can  bound the partial product 

i n  (3.118) to obtain 

0 

n -1 fi (1-:K$2 5 K 4 < m o  (3 . 12 1) 

k=i+l 
( i =  1, 2, . . . J  n -1) 0 

Now from (3.115) , for the las t  term of (3.119) we have 

(3.122) 

Using (3.117) , for the first term of (3 119) we have 

bn fi ( l - t K J 5  a bn fl ( I - t K )  a (3.123) 

0 0 
j =no j =n 

0 

Next, u se  the inequality E711 



a 
a. 

(1 --L gl) I e I 

j 
C 

123 

(3.124) 

a 

j 
which is true for all $K1. 

Using (3 . 120) and (3.1241, along with Assumption (Cl) , (3.123) 

can  be written, i n  the l i m i t ,  a s  

a 2  
00 

b ‘m (1 - l K 1 )  5 b  exp (- 2 > K1) = 0 (3.125) 
j=n j 

0 
j *O C 

0 j=no 
n 

for no < 00. 

Following Dupac C561, we next use Kronecker’s Theorem C71, 721 

to show the  convergence of the  summation terms of (3.119). This 

theorem is here paraphrased i n  terms of the notation of (3.119) . 

terms and i f  (p,, P2,  . . *) denotes a n  arbitrary monotone 

increasing sequence of positive numbers tending t o  + 00, then the 

ratio 

2 2  P@) 2 + P  (-} a 

- 0  c2 (3.126) 

To use  th i s  result in  connection with (3.119) note, from Assumption 

00 n-1 
(C2j, that  1 (e>” < 00 and consequently l im  

A = l  

as well. Next, define (3.127) 
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(1 - $K1)’ j 

P j =  n a 

j = i + l  

where i is any integer i c [ l ,  n] and where, from (3.125) 

l im  P = a0 
j ndoo 

Also, for example, 

1 
< p3 

- P 2 -  n 

(1 - %K1)’ 
i=2 ‘i 

which establ ishes  the monotonicity of the sequence 

Next, write out terms of t h e  las t  summation of (3.119) 

n-1 

i=n k=i+l 
0 

12 4 

(3.128) 

(3.129) 

(3.130) 

(3.131) 

and multiply and divide by /+ 1 
k=no+l 

(1 - :K1)2 and apply 

Kronecker’s Theorem (3.126), with the result: 



n-1 a 
n-a, lim 1 ‘fi ( l - $ K 1 ) 2  

i=no k=i+ 1 

= l i m  
n-* 00 

= 0. 

[-Ino+’ no+l K$ 

1 

1 
n-1 

1 

The convergence of the remaining terms ( involving K4) of (3 . 119) 

follows because each  term is bounded by a corresponding term from 

(3.131). Thus, from (3.122), (3.125) and (3.132) we conclude 

l i m  EIIIBn+l - B l i 2  = l i m  bn+l = o  
n4co n4 00 

(3.133) 

which is the desired mean-square convergence. 

Remark 1: Our derived equations (3.98), (3 . l o o ) ,  (3.106), and 

(3 . 110) are essentially the same a s  several assumptions Kirvaitis E24 1 

made regarding the behavior of the estimation system. In his  

dissertation, these  assumptions are given by his  equations (2.25), 

(2.23), (2.24), and (2.22) respectively. 
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Remark 2 : Mean-square convergence implies convergence is 

probability C88,891. This is written 

( 3  . 134) 
An estimate gn with th i s  property is terms a consistent estimate C881. 

Remark 3: We can show that  the parameter estimate is asymptotically 

unblased by expanding the left s ide of (3 . 133) 

2 
l i m  Ellxn - ell2 = l i m  

n--co n-a, 
- E(2J) - ( e  - E($J) I I  

= l i m  {Ell% n -E(% n )l12-2E((g;E(?J) ,(e-E(?J))+EII8 - E(? n ) H 2 }  
n --,m 

(3.135) 

Now (3 . 135) is composed of two non-negative terms Hence, in  

view of (3.133), both of these  terms are zero when mean-square 

convergence occurs. The t e r m  

is. commonly called the bias of the estimator [ 1151 . Clearly, 

mean-square convergence implies tha t  the estimate gn (of the 

parameter vector e) obtained from (3 69) is asymptotically unbiased 

as n-a,, i.e., 

l im E(?A - 8 = 0 (3.137) 
n-oo 

Remark 4: Note that no knowledge of the s ta t is t ical  conditional dis- 

tribution functions H(y Ixn - cn) and H(y1 xn + cn) was required. 
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CHAPTER 4 

SIMULATION STUDIES 

4 ,, 1 Introduction 

Simulation studies were undertaken to demonstrate the 

application of s tochast ic  approximation to the  estimation of dynamic 

system parameters when it could be assumed that a model which 

exactly matched the form of the system was known a priori. 

Reference Figure 3.4. In preparation for the studies involving the 

human operator, to be reported i n  Chapter 5 ,  only the scalar  output 

of both model and system were used in  generating the  cost function. 

Various levels of scalar observation noise n (t) were introduced 

and, in  addition, parameter noises were a l s o  introduced in  some 

c a s e s  so a s  to  study the effects on parameter estimates of the 

random behavior of a l l  of the modeled parameters, including the 

sampling interval . 

1 

Simulations were performed on the IBM 360-44 digital 

computer . The IBM-supplied continuous system modeling program 

(CSMP) , which was originally designed for the IBM-1130 digital 

computer, was modified for usage on the  IBM-360-44. Various 

special  control subroutines were developed so that the  bas ic  CSMP 

program could be used iteratively i n  parameter estimation. A l l  

simulations were performed by means of this special  CSMP program. 

For example, Subroutine 1, described i n  the  Appendix, is the 

main control program for the  stochastic approximation algorithm 
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and iteration procedure , It implements the K-W algorithm, (3.69) . 
Other special  subroutines will be referred to i n  the sequel. Listings 

for representative programs are  given in the Appendix, 

Parameter noises and observation noise were obtained from 

digital  white noise generators designed to  yield numerical 

sequences approximately uniformly distributed between -1 and +1 . 
The generators could be called through the CSMP program, The 

basic  noise sequence generator, in  Fortran notation, is typically 

represented by 

IR = 7243 
1 IR = 259*IR 

C(I) = FLOAT(IR)*2.0**(-31.0) 
G O T 0  1 (4.1) 

where IR in  an odd integer (ordinarily specified internally in  the 

program) and where C(1) denotes the output of the simulation noise 

sequence generator whose number is given by I. 

digital computer, this  sequence generator will produce Z30 terms 

For a 32 bit 

before repeating C741. Hence, for our purposes, the sequences 

are  random because we will deal  with sequences i n  the order of 2 

terms or less.' In the sequel,  these approximately uniformly 

11 

distributed noise generators will be represented by the equation 

'For the CSMP program, the generator of (4.1) outputs two 
members of the  random sequence during each integration interval 
(0.01 second] . The iteration interval was 10 .O seconds or less. 
Hence, no more than 2000 members of the random sequence were 
required during a particular iteration . 
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(4 . 2) 
c T 

n(t) = kl 1-1, +I] + k2 

where kl is the maximum amplitude of the noise sequence numbers 

and k is the desired mean value. 2 

Both linear and nonlinear systems were modeled. A l l  

notation on simulation diagrams corresponds to  conventional 

analog computer usage. 

Generally, convergence time of the parameter estimates 

depended on the level of the parameter noise present . For cases  

where only zero-mean observation noise was present, convergence 

of the model parameters to  the true values of the system parameters 

occurred. When observation noise did not have zero mean, it was 

found to  induce a slight biasing of the parameter estimates 

proportional to  the mean value of the observation noise. This is 

attributed to  the fact that Assumption (A) of Chapter 3 was not 

then satisfied. The presence of parameter noises (also described 

by 4.2)) caused small biases to  occur in  parameter estimates. 

A different effect on parameter estimation resulted i f  the  

input signal t o  both system and model did not have zero mean 

value: The convergence rate of the sampling interval estimate was 

very much reduced. This was true whether or not observation noise 

and/or parameter noise was present Therefore, when dealing with 

actual t ime history sequences, a s  is done i n  the  next chapter, 

care must  be taken to  insure that the  iteration t ime (T) is chosen 

such that the  input signal has  zero mean value. 
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In summary, the simulation results are a s  follows: 

a) The sampling interval and gain of a first order linear closed 

loop sampled-data system were accurately estimated in the 

presence of various levels of additive observation noise . 
The sampling interval, gain, and t i m e  constant of a second 

order linear closed-loop sampled-data system were 

accurately estimated in  the presence of various levels of 

additive observation noise. 

Good, but less accurate,  estimates of the above parameters 

were obtained when randomness was introduced into each 

parameter. When the ratio of the maximum random deviation 

b) 

c) 

of the parameter to its constant nominal value was a s  high 

a s  unity, estimation accuracies were still 90% or better. 

Good estimates were also obtained in  the presence of both d) 

random parameters and additive output observation noise. 

The presence of a d o c .  term in  the input signal had the 

effect of introducing a slight bias into parameter estimates 

which depended on the  s i ze  of the  d,c .  component. 

e) 

4.2 Simulation Examples 

4.2 . 1 Example I-: Linear First Order Continuous System And Model 

Referring to  Figure 3 . 4 ,  the continuous system and continuous 

model are given by the  linear differentia1 equations 
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1 z = o  
0 

il= Ku(t) 

and 
A 21 z = KG(t) -1 z = o  

0 

(4.3) 

h 
A where z ,  z ,  K, K,  u, and û are scalars. The cost  function is 

given by (3.58) . The complete sampled-data system parameter 

vector is t h e  two dimensional vector 

and the sampled-data model parameter vector is the two dimensional 

vector 

f i=  [i] (4.5) 

From the basic  fact that for a closed-loop sampled-data 

system instability occurs i f  either, or both, T and K are too 

large C731, the initial estimates T1 and K1 were selected so that 

the closed-loop model was stable.  Since a l l  variables are scalar,  

and taking w1 = 1.0 in  (3.58), the cost function is written 

n h 

The K-W procedure is given by the algorithm (3.69) 

where the yZnk1 are defined by (3.64) t o  (3.67) with m = 2 ,  
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and’where an and cn are  given by (3.60). 

The driving signal consisted of either a single low frequency 

sine wave or a random signal. The sinusoid was 

r(t) = 20.0 s in  (.63t) (4 . 8) 
where wC = .63 was chosen as representative of the low frequency 

content of human operator test signals [271. The iteration interval 

was  chosen such that r(t) would have mean value of zero. 

The random signal was given by 

= nO(t) + ko (4.9) 

where ko is a constant selected,  in  general, to remove the 

inherent bias of n o(t), and no(t) is the output of a second order 

filter 

2 
Kf (4.10) F(s) = 
s2 4- 2t;swc + (a C ) 2  

when it is driven by the uniformly distributed zero mean white noise 

sequence generator of (4.2). The gain Kf was chosen such that 

the relative energy of the signal rn(t) would be the same a s  that 

of r(t) , i .e., so that over the particular iteration interval T 

T T 

j 2 0  s in  (.63t))’dt = /(rn(t))’dt 
0 0 

In (4. l o ) ,  the cutoff frequence wc2 = . 63 was chosen to agree 

with the approximate bandpass of the drive signal used with the 
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human operator experiments E271 which will  bereported i n  Chapter 5 . 
In (4.9), the value of ko depends on the iteration interval T and 

is given by 

FOrT = 4.0 seconds,  ko 2: 10.8 f o r t h e  filter of (4.10), when 

5 = .49 and wc2 = .63. However, i n  the following studies,  we will 

not always use this value of k rather, we will study the effect on 

parameter estimates due to using driving signals which have 
0; 

varying levels of bias. The entire low-pass noise filter set-up 

is shown i n  Figure 4 . la . 
In this simulation a random component of the system gain 

was also generated by means of the set-up shown i n  Figure 4.lb. 

Figure 4.3 shows the simulation results for the cases  where 

(zero-mean) observation noise (nl(t) = [-1, +I..) is absent i n  one 

c a s e  and present in  the  other. When observation noise of th i s  

s i ze  was present , it did not induce any apparent bias in  parameter 

estimates. 

Figure 4 . 4 shows the effect of adding a large uniformly 

distributed white noise component to the  gain parameter K so that  

the resultant system gain was 

= 5,O + 5.0 r-1, +1 (4,131 
Kn 1 1 

The zero-mean observation noise is [-1, +l ]  and the  sinusoidal 

drive to the  estimator is given by (4.8) . Clearly, very little 
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UNIFORM DENSITY 
WHITE NOISE: 

{ - l , + l ]  

ni(t) 

@-)- C 

(Zero Mean Value 
Over Seconds) 

i 

Figure 4. la Random Drive Set-Up 

1 
I 
I 

(Iteration 
Interval I 

---- I 

---- 
To Estimator 

Figure 3 . 4  

= 4 . 0  seconds) 

Figure 4. lb Simulation Set-Up For Estimating Noisy Gain and 
Deterministic Sampling Interval 
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t System I 
Noises Are Uniform 
Density White { - l , + l )  

I .C .  
I ~ To Estimator 

I Refer To 

Figure 3 . 4  

Model 

Figure  4.2a Simulation Set-Up F o r  Estimating Noisy Sampling 
and Noisy Gain. 
and Model. 

First Order  Nonlinear Sys tem 

I .C.  
n 

J 
Noiaes Are Uniform 
Density White: f-1. + I )  

’>- -I To Estimator I Refer To 

t { Figure 3.4 

i 

I.C. I .C .  

I 

Figure  4.2b Simulation Set-Up F o r  Estimating Noisy Gain and 
T ime  Constant. Second Orde r  System and Model. 
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biasing of parameter estimates is induced in  this case by the  

combination of large random gain component and small observation 

noise. 

Figure 4.5 is for noise-free observations and parameters. 

However, i n  th i s  case the random drive function given by (4.9) is 

used with ko chosen such that  rn(t) has  zero-mean over the 

iteration interval (T = 4.0 seconds) . That is, ko = -10.8394. 

Again, there is no resulting bias i n  parameter estimates. 

Figure 4,6 shows estimation resul ts  for t he  same drive function 
\ 

but for the case of noisy observations and noisy gain,  Observation 

noise (4.2) was used with and without a bias term (k2). In the  

former case 
c - 

nl(t) = 1.0 1-1, +lj + 1.0 (4.14) 

The estimation result is given by the  dot sequence. Asymptotic 

parameter estimates are: 

the  observation noise is 

nl(t) = 

n 0 

T = .225, K = 5.41; In the  latter case, 

1.0 [-1, +1] (4.15) 

The estimation result  is given by the cross sequence, with final 

values of parameter estimates: T = .236, K = 5.02. 
n h 

In both 

cases, the  noisy gain was given by 

1 
Kn = 5 , O  +0.5 [-1, +11 (4.16) 

Clearly, the  estimation errors are  larger when the observation noise 

is biased than when it is not. 
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Figure 4.7 i l lustrates the effect of using a driving signal (4.9) 

with non-zero mean value. Observation noise and parameter noise 

are  zero. Referring to  Figure 4.5 for comparison, the main result 

is to reduce the convergence rate of T. Addit<onally, the 

asymptotic value of T is  now biased: T = .23. However, neither 

the final value of K nor its convergence rate were affected 

substantially. Hence, we conclude i n  this case that only T is 

h 

A h 

A 

particularly sensit ive to bias  of the driving signal. 

4.2.2 Example 2: Nonlinear First Order Continuous System And 

Mode 1 

Again, referring to  the nomenclature of Figure 3.4, the  

continuous system and model are described by the nonlinear 

differentia 1 equations 

(4.17) 1 zo = 0 3 i1 = K(u(t)) , 

and 
A1 zo = 0 21 3 

z = K(n ' ( t ) )  I (4 . 18) 

A where z ,  z ,  u , and ^u are  scalars  . The cost  function of (3.58) 

is again used. The sampled-data system parameter vector and 

model parameter vectors are 

and 

respectively . 

X =  [:I (4 . 19) 

(4.20) 
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The drive signal is t h e  random function given by (4.9). 

Figure 4.2a is a schematic of th i s  simulation. Any, or a l l ,  of the 

noises shown there could be used i n  combination to furnish a very 

complete simulation of a nonlinear system with noisy parameters 

and observations . 
Figure 4.8 gives estimation results for Example 2 for the  

case where the random drive signal (4.9) has  zero mean value, the 

parameters are noise-free, and where the observations a re  both 

noise-free and noisy. There is a slight bias i n  the parameter 

estimates for the  latter case .  

Figure 4.9 shows estimation results for the case  where the  

observation noise is zero and the  random drive signal 'does not have 

zero mean value over the  iteration interval. A slight bias  is 

induced i n  the estimate of T: T 2: .226 (10% error) . .* 

Figure 4 . 10 shows estimation results where the (zero-mean) 

observation noise is ten  t i m e s  larger than in  Example 1, so that 

(4.21) 

The gain is a l s o  noisy with maximum excursion of random component 

equal  to nominal gain,  i.e., 

K = 0.025 +0.025 -1, +1 (4.22) [ I  
The random drive signal has been bias corrected. Despite the  fact 

that the observation noise is larger than i n  previous experiments, 

reference, for example, Figure 4.8, and considering the  presence 
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of the  large random gain 

Figure 4,8 indicates on1 

Figure 4.11 is for 

Figure 4.10 with the  addition of a large white uniformly distributed 

zero-mean random component to the system sampling interval by 

means of subroutine Sub 2 (described i n  the  Appendix) The 

random parameters are  

T = 0.25 +0.25[-1,  +1] I 

and 

K = 0.025 +0.025 -1, +1 . [ I  
The observation noise is a l s o  large: 

n,(t) = 10 [-I, +,j. 

(4.23) 

(4.24) 

From a comparison of Figure 4 . 11 and Figure 4.10 it is clear that  

the addition of the random sampling component induced some error 

into estimation of the sampling interval. An experiment, not 

reported in  detail  here, indicated that the random component of the 

sampling interval had a bias of approximately -0.0 15 when the 

mean of (4.23)' was checked for Ti = 4.0 seconds . Hence the  mean 

value of the system sampling (over the 4.0 second iteration 
CI - 

1) was: T = 0 -235  . The estimates T are  asymptotic to 
h CI 

T * 0.262; hence the  bias  error i n  T is i n  the order of lo%,  
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(4.26) 1 z o  = 0 0 1  2 z = z  

i2 = +z2 + KBu(t), 2 z o  = 0 (4.27) 

and the model equations correspond. Here B is the t i m e  constant 

and K p  is the effective gain. The foregoing remarks concerning 

cost  function apply here a s  well. The system model  vector is 

X =  

The model parameter vector is 

(4.28) 

(4.29) 

Figure 4.2b shows a schematic of the simulation. In some 

simulations , random components were added to both KB and Po 

In contrast t o  Example 2 ,  T was always deterministic. 

Figure 4,12 shows estimation results for the completely 

noise-free case.  Note  i n  comparison to the first-order systems 

of Examples 1 and 2 ,  that the increased system complexity induced 

a slower convergence rate of the estimates. However, the  

asymptotic values a re  unbiased. 

Figure 4.13 shows the estimation results for the noisy 

parameter and noise observation c a s e  , The noisy system parameters 

are 
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(4 30) 

and 

p = 2.0 +0.2 [-1, +1] (4.31) 

The observation noise is 1-1, +1] . In this  ca se  a slight bias was 

induced in  the asymptotic values of parameter estimates and is 

imputed to the presence of the moderately large random components 

of KP and p .  

4 . 3  Conclusions From Simulation Studies 

The simulations have demonstrated the convergence properties 

which were analytically predicted in  Chapter 3 ,  i.e. , that unbiased 

estimates are obtained when the observation noise has  zero mean- 

value and is uncorrelated with both system and model output s. 

Parameter estimate biases  are introduced by the presence of a 

non-zero mean i n  the observation noise ,  and the  estimation errors 

are  proportional t o  the noise bias .  

When parameter noise is introduced, even when it is relatively 

large, the effect on obtaining estimates of the mean value of the 

parameter is quite small. Therefore, through these simulation 

studies we may proceed with some hope of obtaining reliable 

estimates of human operator parameters in  view of the probably 

s tochast ic  nature of the  human operator's parameters. 

The effect of the bias i n  the  input signal is to induce a very 
A 

slow convergence rate i n  the estimate T of the sampling interval To 
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However, the convergence rate of other parameters is not seriously 

affected, The asymptotic estimate T of sampling interval T was ,  
A 

however , not seriously biased. 
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CHAPTER 5 

RESULTS OF MODELING EXPERIMENTS USING ACTUAL PLANT DATA 

5.1 Introduction 

In this  chapter we will apply the Refer-Wolfowitz stochastic 

approximation procedure described in  Chapter 3 and simulated in  Chap- 

ter 4 to the problem of estimating the  parameters of a plant. Actual 

operating data of plant input and plant output are  used, The particular 

problem chosen is concerned with estimating the parameters of a human 

operator model from discretized data obtained from a control situation 

involving a human operator while he is operating a dynamic load i n  the 

closed-loop feedback configuration of Figure 5.1 

Prior estimates of both the  model form and model parameters of 

the  human operator have been given by several  authors: McRuer 

et ax271  used the spectral analysis  approach and developed linear 

models AdamsD51 and Bekey et a1 I761 used continuous parameter 

tracking methods for finding the parameters of a linear second order 

model. Elkind E773 applied regression analysis  using orthonormal 

fi l ters and obtained linear models. Brainin C781 estimated statist ical  

moments of the  parameters of a simple linear model of the  human 

operator by analog computer solution of the Fokker-Planck partial 

differential equations for the  moments when the random parameter 

component was assumed to be white gaussian. Holmes C25lused 

stochastic approximation to solve for a Volterra expansion representa- 

tion of the generally nonlinear human operator. 
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I c - - - - -  1 . -  I 

r -  - - - - - - - - - -  - - -  , Experiment by Systems 1 

1 Technology Inc. 1 

I 1 1 

1 I A - 1 1  I 
I f-"7 , m 

S .  T.  I. 

I '  '. -? I Operator I L -  ,J , I 

Stochastic 
Approximation 
. Parameter 

Adj us tme nt 
Algorithm 

L i Integration- T. seconds) 
1 

Figure 5 .  1: Configuration of the Experimental Determination of the 
Dynamic Characteristics of the S.  T .  I. Human Operator 
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In particular the models and parameter estimates given by 

McRuer will be used here as a basis  for determining the relative advan- 

tages of stochastic approximation in comparison with some of the other 

parameter estimation models. The parameters which are to  be estimated 

in this  study depend on the particular model chosen. Candidate 

models include: (1) sampler, data-hold, and gain, (2) transport delay 

and gain, (3) sampler, data-hold, and gain, (4) transport delay, gain, 

and lead-lag filter. 

Data from actual human operator experiments were obtained 

from Systems Technology , Incorporated, Hawthorne , California. Data 

for the four variables shown in  Figure 5.1 were supplied in  discretized 

form for coincident sampling time points spaced 0.05 second apart. 

5.2 System Technology Incorporated Test Data and Models 

The data used for our human operator modeling studies were 

obtained from Systems Technology, Incorporated (S.T .I.). The results 

of their human operator experiments are summarized i n  Table 5.1. 

Table 5.2 furnishes the  particular form of human operator model (Y ) 
P 

derived by Systems Technology, Incorporated to  correspond to  a 

particular controlled load (Y,). The tables are to  be used together to 

provide a complete description of a model. For example, for the 

controlled load dyaamics 0 . l/s , the first approximation model is 
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0 

0 

0 

0 

0 

0 

0 

Parameters of 1 Functions of 

3.1 

4.2 

4.2 

1.5 

2.8 

4.0 

3.3 

S.T.I. 
Run Number 

671 129-09 

-0 1 

-0 3 

-05 

-0 7 

-11 

-15 

yC 

0 . l/s 
1/53 ( s +2) 

l/s ( s +4) 

0 . 1/s2 
0. l/s(s+l) 

l/s2 

l/s 

T 

(set) 

0.270 

0.264 

0.250 

0.333 

0,384 

0.330 

0.345 

7 

- 
bm( ") 9 - 
44 

24 

6 

40 

12 

11 

20 

*crossover phase when Y Y = 1.0 
P C  

Table 5.1 S.T.I. Experiments And Results 

Controlled Load 
Dy na m i  c s 

(Yc) 

C 
K - 
S 

- KC 
2 

S 

Human Operator 
(First Approximation Model) 

(Yp' 

1 - T S  K (s+ -)e 
TL 

TL 
1 ' T S  K (s+-)e 

Cable 5.2 Correspondence Between Loads and Human Operator Models 
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S.T.I. has  derived four models i n  order of increasing accuracy: the  

crossover model, the first approximation model, the second approxi- 

mation model, and the precision model. They are tabulated in  

Reference 27.  It should be noted that great care was exercised by the 

experimenters to insure that the input signal was random appearing and 

Gaussian i n  character . 
5.3 Other Current Models 

According to  other recent work c26,281, the human operator is 

currently thought to exhibit an ability to  adapt to sudden changes in  

almost any portion of the overall controlled system. However, dis- 

cussion of models with such adaptation is unnecessary from our point 

of view: we confine our investigation to the estimation of sampling 

intervals and use data from the human operator experiments because it 

is available and because it presents an important problem i n  modeling 

a noisy, nonlinear system where there is reason to suspect that 

sampling may occur. 

5.4 Procedure For Modeling Plant Data By Stochastic Approximation 

The data for two of the four signal points of the human operator 

compensatory tracking problem of Figure 5.1 were used i n  the modeling 

studies.  The studies were restricted to using the data for the load 

Yc = O.l/s. In order that the results of this  study realistically repre- 

sent the most  difficult modeling situation, only the scalar input and 

scalar output variables i(kT ) and m(kT were used. The S.T.I. 
9 d 
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notation will be used when we are  dealing with data derived from the 

S.T.I. experiments. 

Details of the various digital programs used i n  the modeling 

study are given i n  the Appendix. This section is limited to  explaining 

the various modeling procedures, 

Figure 5.1 shows a schematic diagram applicable to the 

various modeling studies. A special  CSMP program module replacing 

module CSMM was written to read data cards as well a s  to perform the 

functions of module CSMM. 

5.4.1 SDecial Subroutines 

Because the data i(kT and m(kT ) were in  discrete form, d q 
linear interpolation was used to obtain additional data points. The 

new sequences a re  defined here a s  i(t) and m(t).  This was performed 

by a special  CSMP subroutine. Special subroutines were also 

necessary for iterative control of the stochastic approximation proce- 

dure and a l so  to generate special  functions. These subroutines a re  

briefly summarized a s  follows: 

a) Subroutine Sub 1: This is the  bas ic  subroutine which 

performs both the modeling and a l so  the stochastic approxi- 

mation iterative calculations. 

b) Subroutine Sub 2: This subroutine performs the linear 

interpolation of the  data i(kTd and m(kT2 and outputs i(t) 

and m(t) . Linear interpolation was  performed twice in each 

numerical integration interval, and the  integration intervals 

were not larger than 0.01 second. 
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c) Subroutine Sub 3: This generates the transport lag emS7as 

required i n  the modeling. 

5.4.2 Study Procedures 

The sequence of experiments was directed a t  obtaining a 

simple optimal model of the unknown human operator from the  candidate 

models of Table 5.3. Steps in the sequence were a s  follows! 

(1) Use the S.T.I. first order approximation model and record 

the cost function obtained at the end of an iteration 

interval. Use this  number a s  a standard of comparison for 

evaluating the relative merit of other human operator 

models. 

(2) Adjust the parameters T" and 2 by stochastic approximation 
P 

to  determine whether improvement in  the model, a s  

measured by the cost function, 

"0 
could be achieved. 

(3) Represent the human operator by the  combination of gain 2 
and sampler and zero-order data hold of period 3. Adjust 

T and by stochastic approximation. 

(4) Add linear lead-lag compensation s/(s+p) to  the sampled- 

data model of (3).  Adjust the parameters ?, R, and 6 by 

* 

stochastic approximation. 
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Model of Human Operator 
Controller 

(1) ^K .-.27s @j6e-:8 
P 

(see note 1) 
r * -  

(2) ICp.-'" 
(see note 2) 

(see note 5) 

Optima 1 Parameters 

E. 

2 = .27 second 
Kp - 31.0 

LI 

T = .2351 
2 = 28.613 

P 

= -2577 t = 26.07 

2 = ,2604 
6 = 26.40 
P = 0.29 

A 

f - -2073 
6 - 31.369 
P = 0.5759 

Minimum Cost 
Jmin 

99,634 

94,105 

101,114 

89,075 

62,034 

Note  1: This is the S.T.I. Model. 

Note 2: This is S.T.I. Model after parameter adjustment by stochastic 
approximation . 

Note 3: This is the sampled-data model. The Z.O,H. refers to a 
zero order data hold. 

Note 4s This is the sampled-data model with phase leadcampensation 

Note  5: This is the S.T.I. Model improved by phase lead. 

Note 6: Parameter values for models  2 through 5 were derived by 
means of stochastic approximation. 

Table 5. 3 A Comparison of Various Models of the Human 
Operator in the Tracking Task  of Figure 5.1 
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(5) Determine the effect of adding the lead-lag compensator 

of (4) to the S.T.I. model. Adjust the parameters T ,  L 
P 

and p by stochastic approximation. 

r e  

4 

It will be noted that the above experiments are  quite simple. 

However, this  does not l imi t  the  generality of the method. The object 

here is to  illustrate the application of stochastic approximation to  the 

problem of estimating the parameters of a plant from actual operating 

data. If desired, the  order and complexity of the candidate model 

could be increased a s  long a s  the cost function reflected a corres- 

ponding decrease after the application of the stochastic adjustment 

techniques, 

5.4.3 Zero-Mean Compensation Of Input Signal 

The adverse effect of a non-zero mean value of input signal on 

the convergence rate and bias  of the estimate of the  sampling interval 

was noted i n  Chapter 4. In order to  obtain an  input signal i(t) with 

mean value substantially close t o  zero, the running average of the 

sequence i(kT was obtained for each k = 1 , 2 , .  . . Then the smallest 

k was selected for which the running average was substantially zero. 

This was termed ko 

s) 

The iteration interval was then fixed a t  

For the data of Table 5.1, and forYc = O.l/s, 3 = 29.4 

seconds. Naturally, the particular i(kT ) and m(kT ) sequences were 
q q 

fixed once7i  was chosen. These same sequences were then used for 

each iteration of the adjustment procedure. (The original S. T. I. data 

traces were 100 seconds i n  duration.) 



5.4.4 Initial Conditions Of The Model 

The printout of the selected t i m e  sequence m(kT ) 
9 

card data indicated that m(0) = 42.0. Both zl0 = 42.0 a s  
CI 
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from the 

well a s  
n 

zl0 = 0 were tried a s  model init ial  conditions. The cost function was 

about 5% lower when the former was used: hence, t h i s  value was used 

for all modeling experiments. Actually, the init ial  conditions could 

a l s o  have been included i n  the parameter vector of the model. 

However, this would have substantially increased the computation 

t i m e  requirements for sequence convergence . 
5.5 Results of Modelins Studies 

Table 5.3 shows the various models of the  human operator 

controller used in  th i s  sequence of experiments. The optimal values 

of the parameters are indicated, along with the resulting value of the 

cost  function at  the end of the  particular stochastic approximation 

iterative search sequence. The cost function, Eq. (5.2) , measures 

the fit of the model output t o  the tracking data.  Specifically, the cost  

function was the integral squared error, where the error is between 

noisy system and model and Ti is the  iteration interval. The adequacy 

of the different models can be compared by examining the values of 

the  cost  function for a sufficiently large number of data samples. 

5.5.1 Discussion Of The Modelinq Results 

Figure 5.2 shows the results of stochastic approximation 
A 6 

adjustment of the parameters 7 and K of the S.T.I. transport lagmodel. 

Note that relatively stationary parameter values are  achieved after 
P 
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CI 

only five iterations. The init ial  estimate of t h e  parameter K was  

purposely chosen as  very small so that large transient corrections 

would be induced i n  the  estimation sequence for both ^T and R and 

thereby expose local minima in  the  cost  function i f  the  local minima 

existed.  We conclude that local minima do not exist for the set of 

parameter vectors here calculated because the  set of parameters which 

minimized the cost function has  minimizing values  which are close t o  

those of the  S.T.I. model. Furthermore, the cost  function is smaller 

than that  realized with the S.T.I. model for the  data samples utilized. 

Figure 5.3 shows the parameter estimates obtained when using 

P 

P 

the  sampled-data model of the human operator controller. Qualitatively, 

the model appears to be poorer than the  transport lag model a s  judged 

by both the  larger value of the  minimum cos t  function and the  rougher 

appearance of the sequential parameter estimates . The minimum cost 

function is about 7% larger than that obtained with the transport lag 

model of Figure 5.2. 

Figure 5.4 shows parameter estimates for the sampled-data 

model with first order linear lead-lag compensation. The sequence of 

the sequential es t imates  of sampling interval is smoother than that of 

Figure 5.3. The cost function is a l so  about 6% lower than for the  

optimal transport lag model of Figure 5.2. 

Finally , Figure 5.5 shows the transport lag model with lead-lag 

compensation. Clearly, th i s  is a much better approximation than 

either of the  sampled-data models as  evidenced by the smooth 

iteration sequences and the fact that the  cost  function is about 30% 
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smaller than for the better of the sampled-data models. Compared 

with the original S.T.I. model, the cost  function is about 37% 

smaller, again,  for the particular data samples here chosen. 

5.6 Conclusions 

Stochastic approximation has  been applied successfully to  

problems i n  the modeling and estimation of parameters in  a system of 

unknown order, unknown nonlinearities , and with possibly random 

parameters and with possibly noisy observations of system output. 

System input was a random function. In all  c a s e s  linear models were 

used. These included both sampled-data models and transport lag 

models, Convergence of the parameter estimates occurred i n  every 

modeling situation, although convergence was smoother and quicker 

with the transport lag models than with the sampled-data models, 

Also, for models of the same complexity, the transport lag model 

yielded a smaller value of cost  function than the sampled-data model. 

So far a s  is known, th i s  is the first study where estimates of 

the various parameters of linear transfer function models of unknown 

systems have been obtained by stochastic approximation from off-line 

operating data.  By contrast, Sakrison obtained estimates of linear 

gains of nonlinear transfer functions comprising an optimal prediction 

filter. Holmes used off-line data t o  obtain an  optimal Volterra series 

nonlinear representation of the human operator. Both used stochastic 

approximation to obtain their parameter estimates.  



170 

In our work, no difficulty in  obtaining convergence was 

experienced when the complex human operator controller was 

represented by the relatively simple models. Furthermore , the optimal 

estimates of the parameters T and K 

transport lag model, changed by only 24% and 8% respectively when 

n (* 

estimated with the s imple  
P' 

the  compensated transport lag model was used instead of the simple 

transport lag model. 

From the results of the study it is concluded that the  human 

operator controller is better represented by the transport lag model, 

with or without linear lead-lag compensation, than it is by a 

comparable sampled-data model . 
While the results we have here obtained suggest that  

stochastic approximation may lead to a better model for the human 

operator than heretofore obtained by conventional spectral analysis 

methods, -we cannot firm up such a conclusion until a sufficient 

amount of data has  been used with the method. In this  study, the 

data t races  i ( k T 4  and m(kT ) which we used for modeling were 

of 29.4 seconds duration, and were chosen from the S.T.I. 

240 second duration t i m e  t races  1273. The parameters of the S.T.I. 

model were based on data from the entire t i m e  interval, while 

we used a little over one-tenth of the data. It is quite possible 

that the parameters that  S.T.I. obtained represent an average 

model, while our parameters represent the model for the particular 

subset of data which we used. Clearly, by applying stochastic 

approximation to t i m e  slices of the original data ,  e.g, , 24 second 

9 
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subintervals of the  original 240 second t i m e  t race ,  it should be 

possible t o  estimate the temporal behavior of time-varying 

parameters. 

5 . 7 Recommendations For Subsequent Investigations 

In Chapter 3 we proved mean-square convergence of parameter 

estimates of sampled-data systems for the estimation configuration 

of Figure 3 . 4 and for  the stated restrictions on observation noise 

and dynamics of the continuouS system. The parameters of the 

continuous system were assumed to  be fixed. It is desirable to 

extend this  work to  the  cases  where the  continuous system has 

either slowly-varying parameters, or  random parameters, or both. In 

connection with the  former, Dupac 11041 has recently proved 

mean-square convergence of the estimates of the  parameter which 

minimizes a regression function when that parameter varies by 

the  multiplier (l+l/n) . Thus, the K-W estimator (3.69) would 

then be given by 

n an - = (1 + l/nmn + - (Y2n-l yZn+$ 'n n+l X (5 . 3) 

An approach to  the analysis  of conditions for the  convergence of 

estimates obtained by s tochast ic  approximation when a parameter 

has  additive noise has  been taken by de Figueiredo and Dyer 11131. 

In addition, work is needed to yield both insight and 

possibly some sort of convergence result for the general modeling 
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case where the  model is of lower order than the unknown system. 

Some work along this  line has recently been reported by Mork C1141. 
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APPENDIX I 

ITERATIVE STEEP ESCENT METHODS 

The various expressions for the K matrix of Table 2 . 1 have 

a common basis .  Suppose it is desired t o  minimize a scalar function 

of several  parameters say 

( 1) 1 6 2  ,k J(2) = J(? X X )  

where ^x is a k dimensional parameter vector , with components a s  

indicated. Assuming that  the third order partials exist and are 

bounded, J can be expanded in  the Taylor ser ies  (to the second 

order term) about the f h  iteration of the parameter vector 2. For 

an  increment A%. i n  the parameter vector, defined a s  the vector 

difference between the (j+l)th and the f h  iterations of t h e  parameter 
I 

vector , we have 

The expansion of J( ) about the  parameter vector ^x is then 1 

J 

the gradient of J with 

where o(&ki) vanishes when lIAfi.11 goes to  zero, v J(?.) indicates 
3 9 J  

respect t o  the vector ? evaluated a t  2 and 1' 
H. isthe 

1 
matrix 

H =  1 

Note that H .  depends 

be changed after each 
I 

(4) 

on the vector 2 

iteration. 

hence its components may 1' 
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The Newton-Raphson technique requires that we select the 

parameter perturbation vector which minimizes the right hand side of 

(3) with respect t o  Ax, 

with respect toA^x. t o  zero, so that 
I 

A This is found by sett ing the gradient of (3) 

This results in  

-1 Hence, K, i n  (2.30) is simply I3 . Note, this  is analogous, i n  

the s-calar ca se ,  to  expanding the first derivative in  a Taylor series 

and solving for the iteration which renders it zero. 

3 j 

Sometimes, instead of the above approach, a more limited 

Newton-Raphson approach is used. T h i s  i s  done a s  follows: 

Take only terms of the linear term in  & i n  (3): 4 
r -Id 

Choosing &. such that movement is opposite to  the gradient of J 

yields 
I 

A 2  = -k V'J(2) j l x  j 

where kl is a scalar. Substituting in  (7) 



175 

Setting (9) t o  zero yields k l  

Substituting into @) give the incremental parameter vector 

Hence, K.  i n  (2.30) is . This i s  however, not included I llV$(2,) I1 2 
I 

in  Table 2 . 1  for the following reasons: This form of the  Newton- 

Raphson method unfortunately yields an  incremental parameter vector 

which becomes infinite i f  the criterion function J does not go t o  

zero when the gradierit v&J goes t o  zero. Such is not the case  with 

(6). Hence, (11) , by itself, is not much used in  gradient work 

although the optimum gradient method does use it C901. 

The steep descent method simply uses a matrix of constant 

positive multipliers for the K matrix. It is not necessarily updated. 

From (2) we have 

rr xj+l = 5tj +Agj . 
Tak.e 

where k is a positive constant and I is the  kxk unit matrix. 
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Substituting into (2) yields 

0 X. j +1 = jtj - kIVL.J(%j) (13) 

Hence, K. i n  (2.30) is simply k1. 
J 

This method, though simple, will not converge if k is chosen 

too large. On the  other hand i f  k is small enough for convergence 

then more computer t i m e  may be used than with the Newton-Raphson 

method. 

The Gauss -Newton method will be illustrated after t he  

application of t h e  Newton-Raphson method to  the scalar  integral 

cost  function 

T 

J = h2(t; ? ) d t  5 
0 

where e is a scalar  function of t i m e  and is dependent on the 

j '  
parameter vector 2 

The Newton-Raphson method applied t o  (14) yields the 

correction parameter vector 

= -Hj-' jV*e2(t; 2.) dt 
X I 

0 

(14) 



But from (4)' we wrote H. as 
3 

177 

(4) 

Applying (4) t o  (14) and writing e(t; 2,) concisely 
I 

The use  of (16) guarantees quadratic convergence of the 

gradient technique when J has  a regular minimum Ic9110 

The Gauss-Newton method uses  the development leading to  

(16) but simplifies the  computation of H by omitting the  first 

term in  the integrand C91, 921.  The multiplying matrix is then 

A s  shown in  Chapter 2 ,  the gradient terms i n  the  integrand of (17) 

are  simply the sensitivity functions a s  discussed i n  connection 

with (2.2 7) and (2.51) , Hence, the gain matrix from (15) is 

Using (17) 
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n 

If we consider a sampled-data system with sampling of period T; 
CI 

then t is replaced by k2T, where k2E 0 ,  1, 2 .. . .) . [ 

where u( 0 ) is t h e  vector solution of the sensitivity difference 

equation. (See Chapter 2 e) 

Finally, i f  we reduce K ,  by means o f a  positive constant k, 
1 

we obtain the modified Gauss-Newton method; for which 

When (20) is used, the  gradient procedure may not converge C 9 l l .  



179 

APPENDIX 11 

THE EQUATION FOR THE DERIVATIVE OF THE DRIVING FUNCTION 

We desire the  expression for the term dT which appears r nT 

a s  one of the driving functions i n  the  sampling interval sensitivity 

difference equations of Chapter 2 .  The analysis  is restricted to 

sinusoidal (or cosinusoidal) inputs,  but, even so, the results are 

quite general since any continuous input can be constructed from a 

Fourier series of s ines  and cosines.  Additionally, a simple s ine or 

cosine drive is still a satisfactory input test drive signal since it i s  

sampled and held in  each loop. Consequently, a succession of step 

functions is imposed on both of the continuous systems. The result 

is that a l l  modes of each of the continuous systems are excited by 

the  infinite frequency content of these  signals.  

The driving signal to each closed loop system is 

r(t) = A sin ut. 

At  the  sampling instant t = k2? 

r(nt) = A sinwk2t  (2) 

0 

Likewise, the continuous derivative of the driving signal (at t = k2T) is 

n 

f(t) = A w COSuk T. (3) 2 
h 

In deriving the  sensitivity difference equation i n  T in  Chapter 2 ,  

we were interested in the input 

from the continuous dynamics 

to express these  signals at the 

signal to, and the output s ignal  

Consequently, it was convenient 

sampling instants t = k T by means 
n 

2 
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of a difference equations. The input signal to each continuous 

system was obtained from a data hold. Therefore, the reconstructed 

signal obtained from the (zero-order) hold can be written 

CI 

(4) 
h 

r(kzT) = A s ino(kz- l )T  

and the  reconstructed derivative of the output of the data hold is 

dr(k2?) 

d? 
= A (k2-l) o COS w(kz-l)T 

Assuming k2 > 5 ,  (5) becomes 

This can also be written 

The desired quantity for the purpose of generating sensitivity 

difference equations appears on the left s ide of (7). The right side 

of (7) shows how this  derivative is constructed from the derivative 

of the  input driving signals (1). 
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APPENDIX I11 

PROPERTIES OF SEQUENCES 

The following properties of series C701 are  used i n  the proof 

of mean-square convergence of the Kiefer-Wolfowitz procedure: 

(1) 

00 

If 2 bn < c o t  then l im bn = 0. Note that this is only a 

necessary condition. 

n-00 n= 1 

N-1 N 
Proof: Let 2 bn = SN-l and 2 bn = SN . 

n=l n= 1 
N 

N-1 
and hence l i m  2 b = S  n 

n= 1 N-,m 

N N-1 
Therefore, l im bN = l i m  [ bn - 2 b j  = S - S = 0. 

N-CO N-00 n= 1 n= 1 
od 

(2) For n = 1, 2 ,  3 ,  . . . , the p series 1 -$ has  the  properties 
n=l  

that is converges (diverges) a s  p 7 1 I (p 5 1) I i *e., 
n=l 

00 

if p >1, and c $-  - - o o  i f  p s  1. 
n=l 
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Problem: Using t h e  above properties, determine the range of 

for which the  following are true 

whereweassume  an=A/n ,  n = l ,  2 ,  3 ,  4 1  ..., and cn=C/ny ,  

and where A ,  C >O. 

Solution: From the convergent p se r ies ,  we have 

2 

$ (3) = n n n= 1 
2tl-y) < co if 2(1-Y) >1, i.e., when 

00 ob 
A 

= G O  when - > 0 and C Y < 1 / 2 .  Also, 1 $ = 1 A_- 1 a 
n c n(l-y) 

n= 1 n=l  

when 1-Y 5 1, i.e., whenY z 0. In addition, if c n = C / n  Y , 

then l i m  C/ny= 0 i f  Y >O. Also, hote from (1) that 
n--co 

< ob implies l im  = 0 which also implies 
n--a, n=l  

l im  (a,/c,) = 0. 
n-co 

Summary: The desired properties 
n=l n= 1 

l i m  an = 0 ,  l im cn = 0 ,  will obtain when 0 < Y < 1/2. 
n--oo ndm 
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APPENDIX IV 

LISTINGS OF SIMULATION PROGRAMS 

This appendix presents a n  example of the special CSMP computer 

subroutines and program used i n  the simulations of Chapter 4. It was 

selected because it i l lustrates all aspects  of the simulation effort. 

Specifically, the listing is for the sampled-data feedback system with 

nonlinear first-order continuous dynamic system given by Example 2 

of Chapter 4. Both the sampling interval T and the gain K have 

random components with excursions set equal to the nominal values. 

Simulation results for this set of l ist ings are given i n  Figure 4.11. 

Also included are several iterations of the parameter vector of the 

sampled-data model: x = ( T ,  K ) .  The nominal values of the para- 

meter vector of the sampled-data system are: T = 0.235, K = 0.025. 

A h 
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INTEGER TEST) 
1 F I C 1 7 6 1 1 1 ~ 1 ~ 2  
P A R l I l l - O T S 2 / 2 . 0  

EPUIVALENCE ioo i i i ,yn i i ,  IWI~I,YP~I.IU~I~I,Y~LII IUDI~~,YPZI 

ctii-1.0 
4 RETURN 
2 P A R l l l ~ = P b R l I I I + O T S 2  

3 C111.0.0 

5 TESTS-6 

lFlPARllII-PAR21IIL3~lrl 

I F I C 1 7 6 1 - 4 . 0 1 * r 5 r 5  

J - M T R X 3 l I I  
CN1~0~01*IPbR2lJI**I-~1~6l~ 

N.PAR311I 
GO TO 120. 219 2 2 1  2 %  2 4 1 r N  

C PAR2111 IS THE SbMPLING INTERVAL 

CNZ-O.OltCN1 

20 P A R 2 l I I - P A R 2 l I ~ - C N L  
PAR31 11-2.0 
RETURN 

21 J - M T R X Z I I I  
YMl .C lJ1  
J * M T R X 4 I I I  
P A R Z l I l = P A R 2 I I l  + 2.O.CN1 
PAR3<11=3.0 
RETURN 

22 J.MTRX2lII  
Y P I I C I J I  
PAR211I=PAR2111-CNL 
J-MTRXSI  I 1  

P A R 2 l J I - P b R 2 l J l - C N Z  
PAR3111-4 .0  
RETURN 

C P A R I l J l  IS THE G A I N  PARAMETER 

PAR211I=PAR2111-CNL 
J-MTRXSI  I 1  

P A R 2 l J I - P b R 2 l J l - C N Z  
PAR3111-4 .0  
RETURN 

C P A R I l J l  IS THE G A I N  PARAMETER 

23 J = M T R X 2 I I l  
YMZ=Cl  Jl 
J.MTRX4I I I  
P A R Z I J I - P A R 2 I J I + 2 . 0 . C N 2  
PAR3111-5.0 
RETURN 

26 J = M T R X Z I I I  
Y P I ' C I J I  
J-MTRX41 I )  
P A R 2 I J I * P b R 2 I J l - C N 2  
P2-PAR2 I I I 
P 3 - P A R Z I  J I 
J J . M T R X 3 l I I  
AN*O.OW005/PAR2 I JJI 
A L = I b N I C N l I  
D l ~ b L * I Y M l - ' I P 1 1  
0 2 - A L * I Y M Z - Y P Z I  
P1.Ul 
P4=U2 
I F I A B S l 0 1 I . L E . O . l I G O  TO 9 
0 1 - 0 . l * 0 1 1 A B S I O l l  

IFIIPbR2II~+UlI.LE~O~O15IGO TO 
P A R 2 1 I I * P A R 2 I I I + U l  

9 CONTINUE 

i n  

11 

12 

30 

CONTINUE 
IF IABSIUZI .LE.O+0251GO TO L l  
U2-0 .011U2/ABS102 l  
C O N I  I N U E  
1FIlPbRLlJI+U2I~LE~O~OO2lGO TO 
PAR21 J ) = P A R I I  J l r D 2  
CONTlNUE 
P A R 3 l I l r l . 0  
P b R P I J J I ~ P b R 2 I J J I + l . O  
Y R I T E l 3 . 3 0 1 P A R 2 l J J I .  Y M l .  YP1. 
W R I T E l 3 r 3 0 l P A R 2 I J J I ~  YM2. YP2. 
RETURN 
F O R M b T I l H L .  7 F 1 7 . 4 1  
EN0 

IO 

1 2  

Pl.01. 
P4r 0 2 1  

P2 I 
I P3? 
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FIIRTRbN 1V 

OOOl 

0002 
0003 
0004 

M O b  

0008 

(1805 

nooi 

now 
nolo 
0011 
0012 
0013 
0014 
0 0 1 5  
0016 
0017 
0018 
0 0 1 9  

0021 
0022 
0023 
0024 
0 0 2 5  
0026 
0 0 2 1  
0028 

no20 

I I  

L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
LIST 
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S 1  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
L I S T  
LIST 
L 1ST 
L I S T  

*ootC 44 PS VERSION 3. LEVEL 1 M T E  be353 USClSSL  YAGt UOUL 

C 
C 

C 
C 

1 

2 

3 
4 

SUBYUUTINE SUU2 
THIS  ELEIENT GENERbTES b U N I T  PULSt  FUR 1X. THE U N I T  
PULSE I S  C l l l .  AN0 IS GENERITE0 YHkNtVER THE T l M t  S I N C l  
THE LbST PULSE I P b R l l l l  I EOUbLS UR EXCCEUS THE VbLUE 
UF THE O U b N T I l Y l  PAR3111*0~k*PAR31IliCIJl I 
C I J I  I S  T H t  W l P U l  OF THE JITTER NUlSE GENERbTOR 

REbL REbLS1395).  NNr AVTX. lll4 
IN lEGER I N l S l 5 R l l  
OIMENSION C1161. P b R l I l S I .  PbR21151. P b R 3 l l S I  
0I) IENSIUN MTRX2175lr MTRX31151. M lRX41151  
U IHENSION O O l 1 0 0 1  
COMMN REALS. INTS 
CUHMON 00 
E D U I V A L E N C E l R t A L S I Z l r  C l l l l  
EOUIVALENCE I Y E A L S t l 9 l .  D l S 2 l  
EOUIVbLENCE IREALS1811. P A R l l l I I  
EOUIVALENCE l R E A L J 1 1 5 b 1 ~  P l R Z I l l I  
EOUIVbLENCE lREbLS12311 .  PAR31111  
EOUIYbCENCE I I N l S 1 1 6 1 .  R T R X 2 l l l l  
EOUIVALENCE 1 1 N T S 1 1 5 1 1 ~  M T R X 3 1 1 I I  
EDUIVALENCE I I N l S l 2 2 b l c  I T R X 4 1 1 l l  
EWIVALENCE l I N l S 1 3 1 6 1 r  11 
1 F l C 1 1 b l l l ~ 1 ~ 2  
P A n 1 l I l = O l S 2 1 2 . n  
J.MTRX21 I I 
O o l ~ I = P A R 3 1 I l + P A R 3 1 l I * C l J I  
C l I I - 1 . 0  
GU TU 4 
P b R l I I 1 - P A R L I I I + U T S 2  
1FlPbRLllI-UUl4113.1.I 
ClI I .0.0 
RETURN 
EN0 

PHASE ROU~.ROUT.NUAUTU 
INCLUOE CSMH.R 
INCLUUE CSM99R 
I N C L W E  0ATSY.R 
INCLUOE LUb0.R 
I N C L W E  I B C W I t R  
INCLUOE F1OCSN.R 
INCLUUE USERUPlvR 
INCLUUE UN1TLOI.R 
I N C L W E  S9RT.R 
INCLUDE FRXPRNrR 
INCLUUE bL0G.R 
INCLUUE EXPqR 

INCLUDE CSMOIR 
INCLUUE CSMliR 
INCLUUE CSH2.R 
INCLl lUE CSM3rR 
INCLUOE CSM4.R 

PHbSE SORT.*.NOAUTU 

INCLUUE SUQ5.R 

L INKbGE EDITOR H l G H t S l  S t V E R I T Y  YAb 0 
I l S V S O O l  bCCESS SOSRUR 
I I S Y S O O Z  bCCESS SOSPCH 
l ISYSOO5 %CESS SOSOP1 
I I  EXEC CONllNUUUS SYSTEM MUUkLING PRUGRAh 

C U N F l G U R b l l W  S P E C I F I C A T I W  

OUTPUT NbRE BLOCK 
NUlSE DRIVE 1 
N O I S E  DRIVE GAIU I 
CORRECT ORlVE RE 3 
1 0 H  ' 

TYPE 

I 

I 
1 
I 

J 
X 
I 
6 
J 
X 
G 

K 

I 
1 
0 
U 
I 

INPUT I 
0 

48 
20 
22 
2 
0 
1 
n 
n 
0 

10 
0 
12 
0 

4 
13 

-10 
0 

-11 
19 
4 
31 

5 
3 3  

I 
9 

6 1  
15 
76 
0 

INPUT Z 
n 
0 

-66 
40 
50 
P 
6 
0 
8 
32 
35 
23 

0 
12 
14 
0 
0 

16 
0 
3 
0 
3 
0 5 

k 
5 
5 
67 
0 

b4 
21 
0 
0 
0 

INPUT 3 
0 
0 
0 
0 
0 
0 
8 
0 
0 
0 
0 

-11 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

11 
0 
0 
0 
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I C I P L R  NAME RCOCK I C l P A R l  
NOISE ORIVE GAIN 2 20.0000 
YY. Z I Z W I  1 0.0 
F ILTER I N T  2 9 0.0 
SVSTEM GAIN 10 0.0 
M n n a  GAIN 11 0.0 
V G A I N  15 0.0 
5VS NO1 GLlL.01 I6 0.0250 
SUM NOISE GAIN 19 LO.0000 

N 21 0.0 
sun NOISE ON 23 0.0 
TX GEN RANDOM SE 40 0.0 

TA 50 0.0 
ORIVE REAN W F S E  64 0.0001 

CHECK ORlVE MEAN 61 0.0 

IIIPROPER PARAMETER S P E C I F I C A T m H  FOR E 

F ILTER OUT GAIN 48 22.4000 

MEAN CORICORRI 66 10.8394 

1 t4 INTEGRATION INTERVAL 
0.01000 

I 0 TOTAL TIM€ 
20.OWOO 

X 0 PRINT lN lERVAL 
1. 

I BLOCK FOR V-AXIS I 

RUN 

TIME 
0.000 
0.500 
1.000 
1.500 
2.000 
2.500 
3 * 000 
3.500 
k.WO 
4.005 

TERMINAI 

PaR2 
0.0 
016300 
L.0000 
0.0250 
0.0025 

500.0000 
0.0 
0.0 

l.OO00 
0.0 

7243.OWO 
0.0 
0.0200 

0.0 
0.0 

LEWENT 

0.0 

II MINIUUM VALUE 

OUTPUT1 I OUTPUT1 
0.0000 0.0000 

-10.4622 -8.0162 
-9.9954 -8.1454 
-9.3959 -8.1505 
-8.1868 -1.9920 
-5.7901 -1.2149 
-3.3115 4.2648 
-1.1b25 8.0584 
0.0005 9.5113 
0.0091 9.3109 

EO BV QUIT ELEMENT 

1 OUTPUT I 
0.0000 
-1.1985 
-1.8509 
-2.1552 
-2.2i26 
-1.8185 
-0.48b6 

i.4120 
1.1169 
1.1186 

AFTER SELECTING DESIRED OPTION PRESS START 

SWITCHES SET ON WERE 0 

TIME nuTPuT 49 WTPUT i o  OUTPUT 11 
0.000 0.0000 0.0000 O.OM)O 
O-WJO -1P.5522 -8.0462 -1.1921 
1.000 -9.9954 -8.1454 -1.8525 
1.500 -9.3959 -8.1505 -2.1452 
2.000 -8.1868 -1.9920 -2.2013 
2.500 -5.1901 -1.21*9 -1.8604 
3.000 -3.3115 4.2648 -0.4613 
3.500 -1.1425 8.OSR4 1.4133 
4.000 0.0005 9.3113 1.7111 
4.005 0.0091 9.3109 1.7135 

RUN TERMINATE0 8V QUIT ELEMENT 

AFTER SELECTING OESIREO OPTION PRESS STiRT 

SWITCHES SET ON WERE 0 

RUN 

T INE 
0.000 
0.500 
1 .DO0 
1.500 
2.000 
2.500 
3.000 
3.500 
4.000 
5.005 

3ERMINAl 

OUTPUT 49 OUTPUT 10 
0.0000 0.0000 

-10.5422 -8.0462 
-9.9954 -8.1454 
-9.3959 -8.1505 
-8.I8M -1.9920 
-5.1901 -1.21k9 
-3.3175 4.2648 
-1.1425 8.0584 
0.0005 9.3113 
0.0091 9.3109 

EO 8'1 W I T  ELEUENT 

OUTPUT 11 
0.0000 
-1.2039 
-1.85e.5 
-2.1641 
-2.2237 
-1.8961 
-0.5H5 
1.w95 
1.1813 
1.1830 

AFTER SELECTING DESIRED OPTION PRhSS S T M T  

W I T C H E S  SET ON WERE 0 

T I R E  OUTPUT 49 W T P U T  10 
0.000 O.0000 0.0000 
0.500 - 1 O . U Z Z  -8.Okb2 
1.OW -9.9954 -8.1454 
1.500 -9.3959 -8.1505 
2.000 -8.lI68 -7.**20 
2.500 -5.1901 -1.2149 
3.000 -3.3115 4.2448 
3.500 -1.1425 8.0584 
4.000 0.0005 9.3713 
4.005 0.0091 9.3109 

RUN TERMINITEO 8V QUIT ELEMENT 

AFTER S E L E C l l l l G  OESIREO OPTION PRESS S 

SWITCHES SET ON WERE 0 

1 
1 

RUN 

T IRE OUTPUT 49. OU?PUT IO 
0.000 0.0000 0.0000 
0.500 -10.4622 -8.0462 
1.000 -9.9954 -8.1454 
1.500 -9.3959 -8.1503 
2.000 -8.1868 -1.9920 
2.500 -5.1907 -1.2149 
3.000 -3.3115 k.2bM 
3.500 -1.1425 8.0584 
4.000 0.0005 9.5113 

2.0000 130130.3125 
2.0000 131185.8122 

LO05 0.0091 9.3109 
TERMINATE0 RV QUIT tLEMENT 

OUTPUT 11 
0.0000 

-1.1581 
-1.1951 
-2.0959 
-2.1534 
-1.8394 
-0.5010 
1.3391 
1.1011 
1.1028 

TART 

1 . 5 ~ 4 4  
1.8517 

130001.3125 
128961.WOO 

1.8534 

PAR3 
0.0 
0.0820 
0.0 
1.0000 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.2500 
0.0 
1.0000 
0.0 
0.0 
0.0 

AFTFR S f L E C l I N G  DESIRED OPTION PRhSS I ,TAR1 
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RUN 

T I M  OUTPUT 49 
0.000 0.0000 
0.500 -10.4422 
1.000 -9.9954 
1.500 -9.3959 
2.000 -8.1868 
2.500 -5.7907 
3.000 -3.3115 
3.500 -1.1425 
4.000 0.0005 
4-005 0.0091 

TERMINATED 8v a u I T  tl 

DUTPUT 10 
0.0000 

-8.0462 
-8.1454 
-8.1505 
-1.9920 
-1.2149 
4.2648 
8.0584 
9.3113 
9.3109 

.EMENT 

OUTPUT I 1  
0.0000 
-3.9103 
-+e8328 
-5.0864 
-5.0606 
-2.1612 
2.3092 
5.6486 
5.8234 
5.8235 

AFTER SELECTING OESIREO OPTION PRESS STbRT 

SYITCHES SET ON UEPE 0 

RUN 

TIME OUTPUT 49 
0.000 0.0000 
0.500 -10.4422 
1.000 -9.9954 
1.500 -9.3959 
2.000 -8.1868 
2.500 -5.7907 
3.000 -3.3115 
3.500 -1.1425 
4.000 0.0005 
4.005 0.0091 , TERUINATEO BY a u n  EI 

AFTER SELECTING OESIREO OPTION PRESS STbRT 

SYITCHES SET ON YERE 0 

OUTPUT 15 
0.0000 

11407.3398 
25490.6055 
35691.9570 
k526+.8359 
54875.5000 
61643.1010 
69799.3150 
80528.0000 
80135.6250 

OUTPUT 15 
0.0000 

11480.5142 
25648.0078 
35883.7148 
55486.8359 
55115.9883 
61882.0430 
70039.0000 
80819.4375 
81028.4375 

RUN 

TIME OUTPUT 49 OUTPUT 10 
0.000 0.0000 0.0000 
0.500 -10.4422 -8.0462 
1.000 -9.9954 -8.1654 
1.500 -9.3959 -8.1505 
2.000 -8.1868 -7.9920 
2.500 -5.7907 -1.2149 
3.000 -3.3115 4.2648 
3.500 -1.1625 8.0584 
4.000 0.0005 9.3119 
6.005 0.0091 9.3709 

TERMINATED BY au i i  ELEMENT 

OUTPUT I 1  WTPUT 15 
0.0000 0.0000 
-3.9495 11356.6953 
-4.8655 25342.0586 
-5.1138 35501.4258 
-5.0887 45036.5391 
-2.1902~ 54620.2656 
2.2964 61381.1289 
5.6841 69535.6875 
5.8594 80205.4375 
5.8595 80411.3150 

AFTER SELECTING OESIREO OPTIOH PRESS START 

SYITCHES SET ON YERE 0 

T IUE OUTPUT 49 OUTPUT 10 OUTPUT 11 
0.000 0.0000 0.0000 0.0000 
0.500 -10.4422 -8.0462 -3.8969 
1.000 -9.9954 -8.1454 -4.8185 
1.500 -9.3959 -8.1505 -5.0113 
2.000 -8.1868 -1.9920 -5.0486 
2.500 -5.7901 -1.2149 -2.1716 
3.000 -3.3115 4.2648 2.2898 
3.500 -1.1425 8.0586 5.6295 
4.000 0.0005 913113 5.8051 
4.005 0.0091 9.3109 5.8058 

n u N  TERMINATED BY au i i  ELEMENT 

AFTER SELECTING OESIREO OPTION PRESS START 

SWITCHES SET ON YERE 0 

TIME OUTPUT 49 OUTPUT 10 
0.000 0.0000 0.0000 
0.500 -10.4422 -8.0462 
..OOO -* . rr54 -(1.14>., 
1.500 -9.3959 -8.1505 
2.000 -8.1868 -1.9920 
2.500 -5.7901 -1.2149 
3.000 -3.3175 4.2648 
3.500 -1.1425 8.0584 
4.000 0.0005 9.3113 

I 3.0000 81028.4375 
I 3.0000 80901.4375 

4.005 0.0091 9.3709 
RUN TERMINATED BY a u n  ELEMENT 

AFTER SELECTING OESIREO OPTION PRESS I 

SYITCHES SET ON YERE 0 

RUN 

TIME OUTPUT 49 
0.000 0.0000 
0.500 -10.4422 
1.000 -9.9954 
1.500 -9.3959 
2.000 -8.1868 
2.500 -5.7907 
3.000 -3.3115 
3.500 -1.1425 
4.000 0.0005 
4.005 0.0091 

TERMINATED 81 a u 1 T  EL 

OUTPUT 10 
0.0000 

-8.0462 
-8.1454 
-8.1505 
-7.9920 

4.2648 
8.0584 
9.3113 
9.3709 

-1.2144 

.EMENT 

OUTPUT 11 
0.0000 
-3.9256 
-*.8*49 
-5.0913 
-5.0724 
-2.1508 
2.3285 
5,6616 
5.8409 

80411.3750 
80511.6875 

5.8410 

TART 

OUTPUT 11 
0.0000 

-6.1054 
-6.5614 
-6.6563 
-6.5015 
-1.1240 
3.8687 
7.6942 
1.6017 
1.6011 

4FTER SELECTING OESIREO OPTION PRESS STAR1 

SWITCHES SET ON WERE 0 

RUN 

AFTER SELECTING D€SIRED OPTION P R t S S  START 
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RUN 

T IME WTPUT 49 WlPUT 10 
0.000 0.0000 0.0000 
0.500 -10.4422 -8.0562 
1.000 -9.9954 -8.1454 
1.500 -9.3959 -8.1505 
2.000 -8.1868 -7.9920 
2.500 -5.1907 -1.2149 
3.000 -3.3115 4.2648 
3-500 -1.1425 8.0584 
4.000 0.0005 9.3113 
4.005 0.0091 9.3109 

TERMINATE0 BV W I T  ELEMENT 

OUTPUT I1 
0.0000 
-6.2395 
-6.6488 
-6.7425 
-6.5250 
-1.0521 
3.1280 
1.5245 
1.6354 
1.6354 

AFT€R SELECTING DESIRED OPTION PRESS START 

SNITCHES SET ON UERE 0 

RUN 

T I M E  OUTPUT 49 
0.000 0.0000 
0-500 -10.H22 
1.000 -9.9954 
1.500 -9.3959 
2.000 -8.1868 
2.500 -5.1907 
3.000 -3.3175 
3.500 -1.1425 
4.000 0.0005 
4.005 0.0091 

TERMINATE0 BV W I T  E l  

OUTPUT I t  
O.OOW 
-6.0925 
-6.5514 
-6.b412 
-6.kW2 
-1.1342 
3.8595 
1.4856 
1.5938 
1.5937 

AFTER SELECTING OESIREO DPTlON PRESS STAR1 

SYITCtlES SET ON HERE 0 

I 
I 

RUN 

T IME W T P U T  49 DUTPUT 10 
0.000 0.0000 0.0000 
0.500 -10.4422 -8.0462 
1.000 -9.9954 -8.1454 
1.500 -9.3959 -8.1505 
2.000 -8.1868 -1.9920 
2.500 -5.1901 -1.2149 
3-000 -3.3115 4.2648 
3.500 -1.1425 8.0584 
*.000 0.0005 9.3113 

4.0000 61195.3125 
4.0000 66524.3125 

4.005 0-0091 9.3109 
TERMlNATEO 8 V  4UIT hLEWENT 

OUTPUT 15 
0.0000 

8431.1484 
18009.0820 
26500.5234 
31.615.1367 
43391.5820 
49410.3150 
51323.8633 
65819.1500 
65953.0000 

OUTPUT 15 
0.0000 

8610.70TO 
18381.5508 
26931.6406 
3515+12ll 
43963.L119 
49954.3750 
57861.9531 
66389.5625 
66524.3125 
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APPENDIX V 

SPECIAL DIGITAL PROGRAMS FOR HUMAN OPERATOR MODELING 

This appendix presents the special programs written for the 

human operator modeling studies of Chapter 5. 

The first listing is for the special program CASS which was 

used to translate and punch the S.T.I. data into format 20A4. 

The second listing is for special program NEAL by which the 

above data is read and stored for use during the human operator 

modeling studies. This special program replaced the standard 

CSMP subroutine CSMM. 

The third listing illustrates the mos t  complicated modeling 

situation considered. It is for model 5 of Table 5.3 , and contains 

three special subroutines. The first subroutine performs the Kiefer- 

Wolfowitz stochastic approximation iterative calculations for 

the transport lag T ,  the gain K,  and the t ime constant B of the 

sampled-data model. The second subroutine brings the stored 

data i(kT 

polation. The third subroutine generates a transport lag of T 

seconds. However, the control of the transport lag is performed 

in  the first subroutine. 

algorithm are included. 

and m&Tq) into blocks 1 and 2 via linear inter- 
9 

Several iterations of the Kiefer-Wolfowitz 



JJCASS Joe ,1118~) 
]A551 ISOR42 
IJMAlNS4 EXEC F O R l R I N  

FnRTRAN I V  MODEL kk PS VERSION 3r  LEVEL 1 O b i t  (18353 

nooi 

on04 

0002 
0003 

0005 
0006 
0001 
oooa 
0009 
0010 
0011 
no12 
0013 
0014 

4 M R N A I  1 2 O A k 1  
slop 
E N 0  
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I 1  JOB .29OW2 

I I N F 4 L  EXEC FURTRAN1BCUl 
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5 2 1  
C 

C 
C 
C 
E 

TEST3. 1 

KEY1 
KEY2 
KEY3 
KEY', 
N E V I 2  
KEY13 
K E V l k  
KEY15 
KEV16 

TEST1 
I t S T 3  
T t S T S  
TEST7 
11RG 

rei 

:bL 51 21. 

C W F I b U l A T I O N  S E C T I W  
P R W R U I  WILL NOT BRANCH OEVLWU THE C W F I G U R A T I W  SECTIUN 
UNTIL SUCCESSFUL SORT TEST IS ACHItVEO AT Y W C H  TIME THE 
S Y I I C H  T E S I l  IS SET TO 2 

10 CONTINUE 

11 GO 7 0  I 12r100lv KEY1 
C GET CD(F1G. SPECS 

1 2  CbLL  CSMl 
C PREPWE FUR SORT 

60 TO 1 12. 1119 TEST1 

CALL csn2 
C l E S T l  I 1 I F  PRE-SORT SCbN INOICATES ERROR 
C TEST1 I 2 I F  PRE-SOIT SCAN IS SUCCESSFUL 

GO TO 112.131. TEST1 
SORT 

13 CALL CSM3 
C TEST FOR SUCCESSFUL SUR1 
C TEST1 I I I F  SORT PROCEWRE IS UNSUCCESSFUL 
C TEST1 I 2 I F  SORT PROCEOULE 15 SUCCESSFUL 

GO TO I L2rlWI v TESTt  
100 CONTINUE 

C SET-UP S tCTION 

C PARAMETERS AND I N I T I A L  CONUITlONS 
GO TO 1110.10Vb. TES13 

LO9 GO IO ILIOillbl. KEY2 
110 CALL C S I k  

115 CONTINUE 
C F U N C T I W  GENERATORS *I***. 

W TO I 1 2 1 1 1 1 8 1 t  TESTk 
l l U  GO TO 1 1 2 0 ~ 1 1 9 J .  TEST3 
1 1 9  GO TO 1120.12Ll.KEV3 
120 CALL CSM5 
121 CONTINUE 

C SET TEST3I2  TO INOICbTE COHPLETION UF I N I l I A L  SPLCIF ICATION 
C UF CONFIGWIATION~ PARAMETERS? LHO FUKCTlMl GENERATOR INTERCt9 

TEST3 I 2 

1...*** 

GO TU 1130r1291 ,  T E S T l  
T E S T l  I 1 U N T I L  F IRST TIM THRWGH 
TEST1 I 2  AFTER F I R S T  TIME THROUGW 

GO TO 1130~1351r KEVk 

C 

1 2 5  
C 

126 

121 
C 

128 
C 

C 
C 

129 
130 

C 

135 
C 

150 
C 

155 
C 

160 
165 

C 
lbRG * 1 

1 7 0  CONTINUE 
CALL LOA0 ( *RuH' l  
CALL csn8 

CALL CSMl  

CALL OATSY I O ~ K E Y 1 6 1  
GO TU 122511321 .  KEY16 
CONTINUE 

%INTERRUPT POINTn  

PLOT SPECS *1.*1*11*1.*1**1 
IARG * 2 

CALL CSM'l 
1INTERRUPT POlNT l l  

- _. 

CbLL OATSY 1 0 1 K E V l 6 l  
GO TO 1225.1551. KEY16 
~~~TINUE 

NEH PLOT FRbUE *********** 

C 
C XINTERRUPT POINT= 

CALL UbTSY l O i K E Y 1 6 l  
GO TU 1 2 2 5 ~ 2 0 0 1 .  KEY16  

2 0 0  CONTINUE 
C 

CSR7 
CSMl  

ICSAAUlkO 
CSbAOlSO 
CSAAOL60 
CSAAO170 
CSIAULBO 
CSbAOl90 
CSAAU2UO 
CSAAVZlIJ 
CSA.0220 
CSAAOLM 
CSbA02*0 
CSbAO250 
CIbAO2bO 

CSAA0330 
CSAA0350 
CSbA0360 
CSAAO370 
CSAA0380 
CSAA0390 

CSAAUkLO 
CSAAOk20 
C S A A M 3 0  
CSAAOkkO 
CSAAO*b0 
C S A A O W  
CSAA0)IlO 
CSAAOkIIO 
CSAAOIPO 
CSAAO5W 
CSAAOSLO 
CSAAO520 
CSAAO53O 
CSAlO5k.O 
CIALO550  
C I A L O W  
C I A 1 0 5 1 0  
CSAA0510 
CSAAO59O 
CSAA0400 
CSAAOb10 
CSAbUb20 

CIAA0630  
C I A A U 6 6 0  
CSAAObSO 
CSAAob60 
CSAA0610 
CSAAObBO 
CSAAO690 
CSAAO,0100 

'TSCSAAO7IO 
CSAAO120 
C S A A O l M  
CSAb01k0  
CSAAUl10  
CSAAO160 
CSAbO170 
CSAAU180 
CSAAO790 
CSAAU800 
CSAAO810 
CSAAOIPO 
CSAAUI IM 
CSAAOBkO 
CSAA0850 
CSAAUII60 
C S A M B l O  
C S b M 8 U O  
CSAAU8VO 
CSAAOVOO 
CSAAOVL~ 
CSAAo920 
CSbAOP30 
C S b A W k O  
CSAAO950 
CSAAOP60 
CSbAOq l0  
CIAAOVUO 
CSAbOVVO 
CSAILOUO 
CSIAIULO 
CSAA1020 
CS111030  
LSbAlU60 
CSAAlObO 
ChAA1060  
CIAL1070 
C S b A I 0 8 0  
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0076 GO TO 12LO12201 v KEY15 C S A A l l b O  
n o 7 7  210 CONTINUE C S A A l l 7 0  
0 0 7 8  
0 0 7 9  

REAU I I r l l  I C i N I ,  N - 1 9  16)  
1 FORMAr l K Z O . 8 1  

C C S A A l I 9 0  
CSbAlZUO 

COMPUTE SECTION I******b*** 

C CSAAl210  
C CALLS INTtRRUPT SUBROUTINE FOR NEW SENSE SMITCH SETTINGS CSAb1220  

0080 220 CALL CSMIO 

ooni 2 2 5  CONTINUE 
0082 CALL LOA0 l'SURTII 

C S A A I Z W  
0 0 ~ 3  CALL CSMlZ 

CSAA1250 
CSAAlPbO 

008s 230 CALL C S W 3  

CSAA1270 
0086 
0081 
0008 GO TO 1 2 5 0 ~ 1 0 1 . K E Y l ~  ChAA128U 

C CSAA1290 
C CSAAl3UO 

CSAA1310 

CSAA1330 
C S A A l 3 4 0  

008s GO TO IZ~O.Z~OI . U E Y I ~  

GO TO 2 2 5  
240 CONTINUE 

SAVE STATUS 
0089 2 5 0  CONTINUE 
0090 WRITE 11.11 I C I N I ,  N I I r  761 
0091 GO TO 10 
0092 EN0 
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0001 

0002 
0003 
0004 
0005 
0006 
0001 

0009 
0010 
0011 
0012 
0013 
0 0 1 4  
0015 
0016 
0017 
WL0 
0 0 1 9  
0 0 2 0  
0021 
0022 
0 0 2 3  
W 2 4  
0025 
0026 
0 0 2 1  
0028 

0029 
0 0 3 0  
0031 
0 0 3 2  
0033 
0034 

0 0 3 5  
0036 
0 0 3 1  
0038 
0 0 3 9  
W k O  
00.1 
0 0 4 2  
0 0 4 3  

oak4 

0045 

oooa 

0016 
0 0 4 1  
0040 
O M  9 

005 I 
0052 
0053 00% 
0055 

005 6 
0 0 5 1  
0058 
0 0 5 9  
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 

0010 
0011 
0012 
0 0 1 3  
001k 
0015 
0076 
0 0 1 1  
0018 

0080 

0082 
0083 
000k 
0005 
0086 

0080 
0 0 8 9  
0090 
0091 
0092 
0 0 9 3  
009k 
0095 

0091 
0 0 9 8  

0100 
OlOt 

noso 

0019 

n o m  

onw 

n n ~ b  

n o 9 9  

SUQYUUTINE SUB1 
l H l S  SUQRUUTINE GENERAltS THE APPROXIIIATE GRADIENT SEARCH IKIEFtR- 
YOCFOYITZI FUR WTIUAC VALUES OF 11 K. A U  0. I H t  CWTRDL UF THE 
7RANSPWl  LAG (11 SfARCH IS EXtUClSEU IN THIS BLUCK RATHER THAU I N  
SPEC SUUROUl lN t  SU03 UEmUSE THt G R A O l t N l  CALCULAllYNS REOUll lED APE 
THE SAUE AS THOSE FOR THt SAMPLING INT tRYAL FUR WlCH THIS S W R U U l l N E  
WAS ORIGINALLY OtSIGNtDm 
REAL REALS l3951  

SUQYUUTINE SUB1 
l H l S  SUQRUUTINE GENERAltS THE APPROXIIIATE GRADIENT SEARCH IKIEFtR- 
YOCFOYITZI FUR WTIUAC VALUES OF 11 K. A U  0. I H t  CWTRDL UF THE 
7RANSPWl  LAG (11 SfARCH IS EXtUClSEU IN THIS BLUCK RBTWER THAW IN 
SPEC SUUROUl lN t  SU03 UEmUSE THt G R A O l t N l  CALCULXllVNS R&Ull lED APE 
THE SAUE AS THOSE FOR THt SAMPLING INT tRYAL FUR WlCH THIS S W R U U l l N E  
WAS ORIGINALLY OtSIGNtDm 
REAL REALS l3951  

C W O N  00 
EUUIVALENCE 
EWIYAL€NCE 
EQUIVALENCE 
EWIVLLENCE 1 1 N T S 1 l S l l t  MTRX3111 
EPUlVALtNCE I R E A L S l 1 5 6 1 r  PAR21111 
EQUIVALENCE IINTSI'"" '  -==zs 
E W I V M E N C E I  W( 1 I e'  
E W I V A L t N C E l D U I 5 I  9' 
IF IC I? ( . I I 1 . I .Z  

I R L A L S 1 2 1 ,  C I I I I  
l R € A L S I l 9 1 ,  DIS2 I 
IREALSI811. PARI11 

1. I I I T S 1 2 2 6 1  , f i l Y X * I  
~ l R t A L S 1 2 3 1 l r P A R 3 1  

11 
111 
I l l  

C W O N  00 
EUUIVALENCE 1 1 N T S 1 1 6 1 ~  MTRX21111. I R L A L S 1 2 1 ,  C I I I I  
EWIVAL€NCE 1 1 N l S $ 3 1 6 1 ~  I 11 l R € A L S I l 9 1 ,  DIS2 I 
EQUIVALENCE IREALSI811. P A R I I I I I  
EWIVLLENCE 1 1 N T S 1 l S l l t  M T R X 3 l ~ l l ~ l l I T S l 2 2 b l ~ ~ l Y X ~ l l l l  
EPUlVALtNCE I R E A L S l 1 5 6 1 r  PAR21111 ~ l R t A L S 1 2 3 1 l r P A R 3 1 I I I  
EQUIVALENCE I l N T S 1 5 2 9 1  I TESTS I 
EWIVMENCEIW~llrV~TlrlW12I~VPl~ilWl3l~~((M~~~UU1k.)~VPKl 
EWIVALtNCElDU151~YM0l~1DOl~l~VP0l 
IF IC I? ( . I I 1 . I .Z  

1 P A R l l I I - O l S 2 I 2 . O  
C I  11-1.0 

5 TESTS-6 
C J r l l T R X 3 L I I - 0 L l 1 0 1  

J=MTRX31 I l  
CN1~O. l * lPAR21J1~+1- .16611 
LN2-3.OICNL 
CN3.CN2 
W P A R 3 I  I I  
GO TU 120.21. 22. 23. 24. 

C PAR21111 T 
20 P A R Z I I I ' P A R Z I I I - C N 1  

PAR3111*2.0 
RETURN 

21 VMl.CI91 
P A R 2 l I l ~ P A R 2 1 I l t 2 ~ O I C N L  
PAR3111.3.0 
RETURN 

22 v P l - c l 9 I  
P A R 2 l I I ' P A R Z I I I - C N 1  

C UTRXkI Ilr0Llkl 
J.MTRXkII1 

C PAR2lJI.PAR2Ikl. K 
PARZIJI.PAR2IJI-CN2 

251 261.N 

PAR3lII.k.0 
RETURN 

J.MTRX4Il l  
PAR2IJI'PAR2lJI*2.O*CN2 
PAR31 Il=5.0 
RETURN 

2 4  VPK-CI91 
J.MTRXkII1 
PARZ lJ I *PAR2IJ I -CN2 

PAR3 lJ I IPAR3IJ I -CN3 
PAR3111.6.0 
REIURN 

J*MTRXkI I I 
P A R 3 $ J l ~ P A R 3 l J l t 2 ~ O W C N 3  
PAR31 1117.0 
RETURN 

J.MTRXIII1 
PAR3 lJ I *PAR31J I -CN3 
PI-PAR2111 
P 2 r P A R Z I J I  
P3.PAR3IJl 

J J - M T R X 3 l I l  
W=0.000001/PAR21 JJI  
AL- I A N I C N l I  
01*AL*lVMT-VPTI 
D2-10.OLALIIVRK-YPKl 
D3-10.O*AL*IVM8-VPIl 
P4.01 
P 5 W 2  
P 6 W 3  
I F I A ~ S I O ~ ~ . L E . O . ~ I W  TO 9 
D1-O.l*D1/ABSlOLI 

IFIlPAR2IIItOLI.LE.O.Ol0lGO TD 10 
P A R 2 l I l ~ P A R 2 I I l + O l  

I F l A 8 S l O 2 I ~ L E . 2 . O I M  TO 11 

23 VW..C191 

P A R 3 1 J l * P A R 3 l k l * 0  

25 VMl l lC191  

26 VPB.CI91 

JJ.MTRX3lI l*ILl101. PAR21IOI.N I A N  INDEX1 

9 CONTINUE 

10 CONTINUE 

02*2.0*02/ABSIO21 
11 CONTINUE 

lFIIPAR2lJI+O2I.LE.0.002lGD TO 12 
P A R Z I J l r P A R 2 l J l + O 2  

IFlA8S1D31.GE.5.OlD315.0L03/A8SlO3~ 
P A R 3 l J l ~ P A R 3 I J l t 0 3  
I F I P A R I I  J 1 .L€.O.OlPAR31J 1.0.0 
PAR31 Il .L.0 
P A R 2 l J J I ~ P b R Z l J J I * 1 . 0  
Y R I T E 1 3 r 3 0 1  P A R I l J J I +  VMT. YPl. P4, 01. PI .  PAR2111 
U R I T t 1 3 r 3 0 1  PARPlJJ11  YMLt VPKI P5. 021 P2. P A R Z I J I  
U R I T E 1 3 r 3 0 1  PARPIJJl r  VM8r VP0. Pb. 03. P39 P A R I I J I  
RETURN 

EN0 

12 CONTINUE 

30 F O R M A T 1 1 H l ~ l F L l . ~ l  



0001 

0002 
0 0 0 3  
00w 
0005 
0006 
0001 
0008 
O W 9  
0010 
0011 
0012 
0 0 1 3  
0014 
0015 
0016 

0011 
0018 
0019 
0020 
Do21 
0 0 2 2  
0 0 2 3  0024 
0025 
0026 
0021 
0028 
0 0 2 9  
0 0 3 0  
0031 
0 0 3 2  
0033 
0 0 3 4  
0 0 3 5  
0 0 3 6  

0001 

0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
OOlL  
0012 
0013 
0014 
0015 
0016 
0011 
0018 
0 0 1 9  
0020 
0021 
0022 
0 0 2 3  
0024 
0025 
0026 
0 0 2 1  
0028 
0 0 2 9  
0030 
0031 
0032 
0033 
0 0 3 4  
0 0 3 5  
0 0 3 6  
0 0 3 1  
0 0 3 8  
0 0 3 9  
0040 
0061 

OOI2 
0043 
0044 
0055 
0016 
ow1 
0048 
00- 
0050 

SUBROUTINE SUB2 
C PROGRAM TO BRING OATA I AN0 INTO BLOCKS 1 AN0 2 
c INTERPOLATIM 

V I A  

R E M  REALS13951 
R E A L W  00l101 
iNT tGER 1 N l S l 5 8 1 1  
INTEGER*Z N€UIbOO.21 
DIMENSION C11611MTRX2l15I~IITRX3l151~MTRX4l151 
OIUENSION PARl I151 .  P A R Z I l S I t  PAR31151 
CMNlW REALS, INTS 
CWMON NED. OU 
EWIVALENCE I I N T S 1 1 6 1 ~  N l R X 2 I I l I r  lREALS l21 .  C I L I I  
EWIVALENCE l l r ( T S l 3 7 6 1 .  1 I r  l R E A L S I l 9 I .  DTSZ I 
EQUIVALENCE I R E A L S I 8 I I .  P A R l l i I I  
EWIVALENCE I I N T S I I S L I .  NlRX3lL1I~lINTSl2261~MTRXII11I 
EQUIVALENCE lREALS l1561 .  PAR21111 ~ l R E A L S l 2 3 l l r P A R 3 I l I I  
EWIVALENCE 11NTS15291 v TEST5 1 
INTEGER TEST5 

P.PAR2lll 
IF lC1161 l l . 1 .2  

C PROGRAM TO BRING UATA I AN0 M INTO BLOCKS 1 AND 2 V I A  INTERPOLAT 

1 PARIIII.oTsIIz.o 
P A R 2 l l l ~ P ~ ~ ~ l l ~ + i . o  
RMTIIX~(II 
L.MTRXSl 11 
T K = C l l b l  

4 RETURN 
2 PARl l1 l .PARI l I I+OTS2 
LO FORMAT11H ,216. F l l ~ I r l b ~ F 1 1 ~ ~ ~ I b ~ f l l . 4 1  

~ T * ~ C ~ l 6 l - l K l l ~ 0 5  
C I K I - N E D l P . I I ~ T T 8 I N E O l P * ~ ~ ~ l - N E O l P ~ 1 I I  
C l L I ~ N E O l P ~ 2 l ~ T l 8 l N E O I P + L I 2 I - N E O l P ~ 2 l ~  
IFIPAR1111-.0513.1.1 

3 M N T I N U E  
1F IC11b1-29 .411rS~5  

5 TESTS=(, 
PAR2lII.0.0 
RETURN 
EN0 

194 
LINEAR 

I O N  

SWRWTINE sw3 
PROORAH TO OENERATE A TRANSPORT LAG OF T SECONDS. THE 
CWTROL OF THE 1RANSPORT LAG V I A  GRlOlENT CALCULATIWS IS PERFBRMED 
I N  SUB1 I N  THE SAME MANNER AS MAS W N E  PREVIWSLV F U  THE SAMPLIW 
INThRYAL. THIS SPECIAL ONLY PROVIOES A TIME DELAY OF T SECWOP I N  
TnE ERR- SIGNAL. 
REAL R E A L S I 3 9 5 I  
REAL04 0 0 1 1 0 I ~ E l 1 0 1  
INTEGER l N l S 1 5 ~ 1 1  
INTEGERVZ N E O 1 6 0 0 ~ 2 1  
DIMENSION C 1 7 6 1 ~ M 1 1 1 2 1 1 5 1 ~ ~ T R X 3 l 1 5 ~ ~ N T R X 4 ~ 1 5 1  
OIMENSIW P A R I l l 5 I .  PAR21151. PAR31151 
C D U W  REALSv INTS 
MUUW NED, W 
CDUW E 
EQUlVALENCE l I N T S I l 6 1 .  MTRX21111. lREALS l21 .  C l 1 I l  
EWIVALENCE l I N T S 1 3 7 b l r  1 l r  I R E A L S I 1 9 l v  O l S 2  I 
EQUIVALENCE I R E A L S I L I I I r  P A R t l l l l  
EWIVALENCE l1NTSlLSLI~ UTRX3I1~~~lINTSl2261~MTRX~llll 
EQUIVALENCE I R E A L S 1 1 5 6 1 ~  PAR2lLII . I R t A L S l 2 3 L I ~ P A R 3 l l I I  
EWIVALENCE l I N T S 1 5 2 9 l  s TEST5 I 
INTEGER TEST5 
J-MTRXZI I )  
T W P A R I I  J I 
I F l C l 1 6 1 1 7 r 1 ~ 2  

T EI11=0.0 
EIZI-0.0 
El31.0.0 
El41*0.0 
E151.0.0 
E l 6 1 ~ 0 . 0  
E l  71 -0.0 
E181*0.0 
E l 9  1.04 
E 110110.0 

1 P A R l l l l ~ O l S 2 1 2 . O  
EI11.El21 
E l  2 M E l 3 1  
E 1 3 I - E l 4 1  
E l  51.EI51 
E I S I - E l 6 1  
E 1 6 1 * E l l l  
E I l l - E l 8 I  
E l 8 l - E l 9 1  
E l 9 l - E l  lo1 
EI IO I .C lz1  

C l l 2 I ~ E l i I  
C C l 2 I  15 THE ERROR SUMUER 

LO FORUATILH . l l F9 .41  
4 RETURN 
2 PaRL l I l .PARl I1 I+OTS2 

IFlPAR1l11-T0110.013.1.1 

1f I C I 1 6 1 - 2 9 . 4 1 4 r S ~ 5  

RETURN 

3 C W T l N U E  

5 TEST)-6 
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L I S T  
LIST 
L I S T  
L I S T  
L I S T  
LIST 
L I S T  
LIST 
LIST 
L I S T  
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
L I S T  
LIST 
L I S T  
L I S T  
L I S T  
L I S T  
LIST 
L I S T  
L IS1 
L l S T  
LIST 

PHASE RDOT.RDOT.NOAUTO 
INCLUDE NEALsR 
I N C L W E  CSM9.R 
INCLUDE OATSUtR 
I N C L W E  LOAOIR 
INCLUOE 18COW.R 
I N C L W E  FI0CSI.R 
INCLUOE USER0PT.R 
I N C L W E  ONITA8a.R 
INCLUDE 5WT.R 
I N C L W E  FRXPR#.R 
INCLUOE AL96.R 
I N C L W E  EXPrR 

PHISE SORTI*~WOAUTO 
I N C L W E  CSM0.R 
INCLUDE CSM1.R 
I N C L W E  CSM2.R 
INCLUOE CSM3.R 
I N W W E  CSM4.rR 
INCLUDE CSM5.R 
I N C L W E  CSMbrR 
INCLUDE CSM7.R 

INCLUDE CSU13.R 

INCLUDE CSMIOIR 
I N C L W E  CSMLLIR 
INCLUDE CSM8.R 
INCLUDE CSMML.R 
INCLUDE SU81rL 
I N C L W E  S l M l O O O l r L  
INCLUDE SUBlOOO21L 
I N C L W E  SU84rR 
INCLUDE SU85.R 

INCLUDE c s n 1 2 . ~  

PHASE RUI6 ( * IT rNMUTO 

L I M A 6 E  EDITOR H I W E S T  SEVERITV MAS 0 
ffSVSOOl ACCESS SOSRUR 

f fSVS005  ACCESS SOSOPT 
1 1 5 ~ ~ 0 0 2  ACCESS sospcn 
I f  EXEC CONTINUOUS SISTER WOOEL~NG PROGRAM 

CONFIGURATION SPECIF ICATION 

W T P U T  NAME BLOCK TVPE INPUT 1 INPUT 2 INPUT 3 
INPUT1 I I 1  1 K 0 0 0 
SUMMER 2 1 -4 0 
N W E L  I N T E 6  4 I 0 12 14 
TO GRA.0. CONT.IS 5 I 9 IO 4 

K 0 0 0 SVSTE8l OUTPUT 6 
ERROR S U M  
SQUARE 8 X 7 7 0 
INTEG ER SPUARE 9 I 0 n 0 

7 + 6 -4 

N 10 K 0 0 0 
P I S P E C I  COUNT 11 2 1 1 6 
TRANS LAG OUTPUT 12 K 0 0 0 
TRANS LAGISPECIA 13 5 0 0 
S I G N  REVERSER I4 4 0 0 

I N I T I A L  CUt l f l l T IONS AN0 PARAMETERS 

I C l P A R  NAME BLOCK I C f P A R l  
INPUT I111  1 0.0 
MOOEL 1.C.r K. 8 4 0.0 
TO T IME OELAV 5 0.0 
OUTPUTIUI I  6 0 .O 
INTER. SO. ER. 9 0.0 
IMPROPER PARAMETER SPECIFICATION FOR 
N 10 0.0 
P CWNTERISPECI  11 0 .a 
TRANS. LAG (SPEC 13 0.0 

I II INTEGRATION INTERVAL 
0.01000 

I II TOTAL TIME 
30.00000 

I II PRINT INTERVAL 
I. 

PAR2 
0.0 
0.1000 
0.2750 
0.0 
5.0000 

1.0000 
0.0 
0.0 

ELENENT 

PAR3 
0.0 
0.0 
1.0000 
0.0 
0.0 

1.OOOO 
0.0 
0.0 

I r# M O C K  FOR V-AXIS % n UINIWM VALUE a 

RUN 

TIME 
0.000 
1.000 
2.000 
3.000 
4.000 
5.000 
6.000 
7.000 
1.000 
9.000 

lO.000 
l l . 000  
12.000 
13.000 
14.000 
15.000 
16.000 
1T.000 
18.000 
19.000 
20.000 
21.000 
22.000 
23.000 
24.000 
25.000 
26.000 
27.000 
28.000 
29.000 
29.405 

T E W l N A T l  

OUTPUT1 I 
0 .oooo - 174.W00 

-76.0000 
-7.0001 

-111 .om1 
-153.9997 
-157.0000 
-131.0001 
-148.0001 

70.wo1 
-k0.9999 
-50.0000 
116-0000 
256.0000 
138.9999 
51.0000 
-5.0001 

-1 I O .  9999 
-62.9993 
128.0023 
128.9986 
-39.9990 

49.0002 
21.9994 
15.9999 
42.99v5 

100.9999 
-3.0005 
17,9996 

156.9997 
112.3003 

:O 8V WIT ELI  

OUTPUT1 
0.0000 
-5.5247 

-20.5907 
-22+3++2 
-22.39- 
-32.7464 
-41.8270 
-50.37(1 
-61.4614 
-65.8497 
-57.3481 
-55.8109 
-52.3286 
-32.9k29 

-8.5259 
1.3414 
k.8665 
1.2392 

-9.5273 
-7.8476 

5.9312 
13.3071 
10.1029 
15.8490 
20.1324 
19.8030 
22.7592 
28.1106 
2k.0136 
27.0920 
32.5272 

:MEN1 

I W T P U T l  I W T P U T  9 
0.0000 0.0000 

-1+5.0000 20762.9336 
-71.0001 91031.6815 

33.0001 103145.1875 
-99.0000 119391.6250 

-143.0001 155144.11175 
-65.0000 168111.5375 

-100.0001 179303.6875 
-160.0000 218466.2'100 

-59.0000 237347.4375 
33.0001 212134.6250 

-29.0001 280318.0750 
51.0001 218519.6875 

183.0000 413362.5625 
152.0003 713336.1875 

70.0000 758001.8125 
52.0001 771992.5000 
-54.0002 782290.3750 
-77.9995 809ObO.3125 
114.0004 830436.4375 
169.9999 928983.3125 

17.0000 982066.6250 
-1.9999 984392.8125 

106.9997 1015204.1875 
60.0003 1027280.5625 
13.0000 1032235.0625 
18.0000 1036194.3125 
30.9997 104570b.1875 

-16.9996 1067649.0000 
112.0007 1073173.0000 
154.3995 1100442~0000 

..*..I.. 
1 
1 
1 

1 
1 



AFTER SELECTING DESIRED U P T I W  PRtSS START 

surTcnEs SET ON WERE o 

AFTER SELECTING DESiREU UPTIMI PRtSS START 

SWITCHES SET ON WERE 0 

RUN 

AFTER SELECTING DESIRE0 UP11044 PRtS5 S7M7 

SWITCHES SET ON WERE 0 

OUTPUT 9 
O.M)W 

21194.1211 
96010.6075 
lOb090.5625 
121861.0625 
151298.8125 
171569.5000 
103005.2500 
222795.5625 
241005.7500 
211557.5375 
285936.0625 
295S13.2500 
S932S2.8150 
128239+0150 
113b95.5625 
71769112500 
791119.6375 
1125815.5000 
151602.7500 
9*7001.9315 
1001691.1500 
LOMI 52.9315 
1035259~0000 
10S7520.1875 
1032293.0000 
1051213.0000 
lOb5817.0000 
1088195~0000 
1093166.0000 
ll216U)rOOOO 

SHITCHES SET ON WERE 0 



RUN 

AFTER SELECTING OESIREO OPTION PRtSS START 

SYITCHES SET ON YERE 0 

R W  

TIME OUTPUT 1 
0.000 0.0000 
1.000 -174.0000 
2.000 -16.0000 
3.000 -7.0001 
k.000 -1LI.0001 
5.000 -153.9997 
6.000 -157.0000 

8.000 -L48.oOOL 
9.000 10.0001 

10.000 -40.9999 
11.000 -50.0000 
12.000 116.0000 
13.000 256.0000 
15.000 138.9999 
15.000 51.0000 
16.000 -5.0001 
17.000 -110.9995 
18.000 -62.9993 
19.000 128.0023 
20.000 128.9986 
21.000 -39.9990 
22.000 49.0002 
23.000 21.999k 
24.000 15.9999 
25.000 42.9995 
26.000 L00.9999 
27.000 -3.0005 
28.000 17.9996 
29.000 156.9997 
29.405 172.3003 
TERMINATE0 BV QUIT €1 

1.000 -13?.0001 

OUTPUT 4 
0.0000 

-5.8966 
-25.>459 
-36.2193 
-46.7005 
-71.7085 

-102.47511 
-14% 7222 
-191.3815 
-247.5365 
-301.6790 
-375.1914 
-+63.6306 
-553.3020 
-65k.7759 
-793.k495 
-970.3796 

-1195.2434 
-L480.103L 
-1818.5718 
-2218.9+68 
-2715.816k 
-3338.1858 

-5020.5391 
-6164.89kS 
-7566.9062 
-92115.7305 

-11407.5859 
-14006.1611 
-l5216.5391 

- 4 a 9 z . 9 2 ~ ~  

.EMEN1 

AFTER SELECTING OESIREO OPTION PRESS STAR1 

SYITCHES SET ON YERE 0 

TIME OUTPUT 1 OUTPUT k 

1 
1 
1 

RUN 
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AFTER SELECTINS OESIREO OPTION PRtSS START 



SWITCHES SET ON WERE 0 

RUN 

OUTPUT 4 
0.0000 

-45.2623 
-39.1102 
9.1981 

-20.356k 
-43.5258 
-31.9466 
-4k.4886 
-49r2124 
-12A853 
1.4991 

-21 e0805 
21.011k 
55.0191 
U.8090 
10.7908 
18.2055 

-28.2632 
-24.0891 
2 6.529 1 
56.5701 
4.8991 
4.6267 
2910659 
12.3220 
6.2162 
16.0872 
124316 
-1.1710 
k8.1063 
kk.653k 

EHENT 

AFTER SELECTING OESIREO OPTION PRtSS START 

19 8 
0.0 " I * 1 * 

SWITCHES SET ON YERE 0 

RUN 

AFTER SELECl ING DESIKEO OPTION PRtSS START 

SWITCHES SET ON YERE 0 

T I R E  OUTPUT 1 OUTPUT 4 
0.000 O.OOO0 0.0000 
1.000 -114.0000 -46.1095 
2.000 -76.0000 -41.4292 
3.000 -1.0001 5.1159 
4.000 -111.0001 -19.6623 
5.000 -153.9991 -41.4184 
6-000 -151.0000 -35.9555 
7.000 -131.0001 -43.8013 
8.000 -148.0001 -51.1331 
9.000 lQ.WO1 -15.1108 
10.000 -40.9999 2.5381 
11.000 -50.0000 -19.1101 
12.000 116.0000 22.1246 
13.000 256.0000 56.5513 
15.000 138.9999 46.8542 
15.000 51.0000 12.6227 
16.000 -5.0001 11.181& 
17.000 -110.9995 -23.6120 
18.000 -62-999s -26.6261 
19-000 128.0023 21.8635 
20.000 128.9984 U.8588 
21.000 -39.999s 3.3139 
22.000 49.0002 0.1998 
23.000 21.9994 30.0021 
24.000 15.9999 12.0244 
25.000 42.9995 5.1204 
26.000 100-9999 11.6912 
21.000 -3.0005 12.3182 
20.000 11.9996 -8.8055 
29.000 156.9991 48.0151 
29.405 112.3003 45.9811 

RUN TERHINITEO BV WIT tLEUEN1 

AFTER SELECTING OESIREO OPTION PRtSS S 

OUTPUT 9 
0.0000 

10402.6406 
48538.6367 
55594.2930 
65832.8150 93166.6875 

104151.0000 
119915.6815 
165181.5000 
203563.7500 
209316.8750 
212b82.3125 
213818.5625 
216324.11500 
360282.0000 
31941b.3150 
389185.9315 
396289.2500 
k06963.6815 
411059.5000 
466785.0625 
k99585.2500 
k99181.9315 
523381.3150 535014.3150 

5+3852.1815 
5Cs001.UO00 
559221.1815 
565941.8150 
510341.0150 
589451.3150 

;TAR1 
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R I M  

AFTER SELECTING OESIREO OPTION PRkSS STAR1 

SWITCHES SET W WERE 0 

R W  

4FTER SELECTING OESIREO OPTIGU PRESS START 

SWITCHES SET ON YERE 0 

RUN 

TIME 
0.000 
1.000 
2.000 
3.000 
k.000 
5.000 
6.000 
1.000 
I.000 
9.000 

10.000 
11.000 
12.000 
13.000 
14.000 15.000 
16.000 
17.000 
111.000 
19.000 
20.000 
21.000 
22.000 
23.000 
25.000 
25.000 
26.000 
21.000 
211.000 
29.000 
29.M5 

TERMINK 

WTWl k OUTPUT e 0.0 ... U..... 

AFTER SELECTING OESIREO OP11011 PRESS STAR1 



200 
TCHES SET ON UERE 0 SUI  

1 
1 
1 3.0000 576459.5000 

29.405 172.3003 42.9465 
RUN TERMINAIED BV QUIT tLEUENT 

0.0 I.**.**.*. 
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